From 616ca5abfc19a614c086e5bf9360b348d144f5d4 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 23 Jul 2023 14:48:58 +0200 Subject: Initial commit for publication --- crystal.py | 138 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 crystal.py (limited to 'crystal.py') diff --git a/crystal.py b/crystal.py new file mode 100644 index 0000000..58a1cee --- /dev/null +++ b/crystal.py @@ -0,0 +1,138 @@ +from math import * + +import numpy as np + + +# Grid generator for direct and reciprocal space +class UnitCell: + def __init__(self, N, basis): + self.N = N + self.d = basis / N # displacement basis of grid points + + + # Generate NxNxN grid to represent functions inside the cell + def grid_points(self): + gx = np.zeros((self.N, self.N, self.N)) + gy = np.zeros_like(gx) + gz = np.zeros_like(gx) + + if self.N % 2 == 0: + ns = range(-self.N // 2, self.N // 2) + else: + ns = range(-(self.N - 1) // 2, (self.N - 1) // 2 + 1) + + for i in range(self.N): + for j in range(self.N): + for k in range(self.N): + v = ns[i] * self.d[0] + ns[j] * self.d[1] + ns[k] * self.d[2] + gx[i, j, k] = v[0] + gy[i, j, k] = v[1] + gz[i, j, k] = v[2] + + return gx, gy, gz + + + # Volume of smallest parallelepiped representable on this grid + def differential_volume(self): + dV = np.dot(self.d[0], np.cross(self.d[1], self.d[2])) + return abs(dV) + + + +# Base class for periodic structures, don't use it directly +class Crystal: + def __init__(self, N, basis): + self.a = basis + self.b = self.get_reciprocal_basis() + self.cell_direct = UnitCell(N, self.a) + self.cell_fourier = UnitCell(N, self.b * N) + + + def get_reciprocal_basis(self): + V = np.dot(self.a[0], np.cross(self.a[1], self.a[2])) + b1 = (2 * pi / V) * np.cross(self.a[1], self.a[2]) + b2 = (2 * pi / V) * np.cross(self.a[2], self.a[0]) + b3 = (2 * pi / V) * np.cross(self.a[0], self.a[1]) + return np.array([b1, b2, b3]) + + + def get_grid_direct(self): + rx, ry, rz = self.cell_direct.grid_points() + dr = self.cell_direct.differential_volume() + return rx, ry, rz, dr + + + def get_grid_fourier(self): + qx, qy, qz = self.cell_fourier.grid_points() + dq = self.cell_fourier.differential_volume() + return qx, qy, qz, dq + + + # Convert sequence of letters to coordinates for band structure plots. + # The letters' meanings are stored in a dictionary self.bz_points. + def get_brillouin_zone_path(self, chars): + path = [] + for c in chars: + k = self.bz_points[c] # should probably catch KeyError here + p = k[0] * self.b[0] + k[1] * self.b[1] + k[2] * self.b[2] + path.append(p) + + return path + + + +# Derived class for simple cubic (sc) crystals +class CubicSimple(Crystal): + def __init__(self, N, a): + a1 = np.array((a, 0, 0)) + a2 = np.array((0, a, 0)) + a3 = np.array((0, 0, a)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/sc.php + bz_points = { + "G" : (0, 0, 0), + "R" : (0.5, 0.5, 0.5), + "X" : (0, 0.5, 0), + "M" : (0.5, 0.5, 0) + } + + + +# Derived class for body-centered cubic (bcc) crystals +class CubicBodyCentered(Crystal): + def __init__(self, N, a): + a1 = np.array((-a/2, a/2, a/2)) + a2 = np.array(( a/2, -a/2, a/2)) + a3 = np.array(( a/2, a/2, -a/2)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/bcc.php + bz_points = { + "G" : ( 0, 0, 0), + "H" : (-0.5, 0.5, 0.5), + "P" : ( 0.25, 0.25, 0.25), + "N" : ( 0, 0.5, 0) + } + + + +# Derived class for face-centered cubic (fcc) crystals +class CubicFaceCentered(Crystal): + def __init__(self, N, a): + a1 = np.array((0, a/2, a/2)) + a2 = np.array((a/2, 0, a/2)) + a3 = np.array((a/2, a/2, 0)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/fcc.php + bz_points = { + "G" : (0, 0, 0), + "X" : (0, 0.5, 0.5), + "L" : (0.5, 0.5, 0.5), + "W" : (0.25, 0.75, 0.5), + "U" : (0.25, 0.625, 0.625), + "K" : (0.375, 0.75, 0.375) + } + + -- cgit v1.2.3