From cc295b5da8e3db4417523a507caf106d5839d989 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 2 Jun 2021 13:28:53 +0200 Subject: Introduce collapsible proofs to some articles --- .../know/concept/binomial-distribution/index.pdc | 72 +++++++--- content/know/concept/convolution-theorem/index.pdc | 26 +++- .../know/concept/curvilinear-coordinates/index.pdc | 154 +++++++++++++-------- .../know/concept/dirac-delta-function/index.pdc | 41 +++--- .../know/concept/heaviside-step-function/index.pdc | 27 ++-- .../know/concept/holomorphic-function/index.pdc | 71 ++++++---- content/know/concept/parsevals-theorem/index.pdc | 32 +++-- static/main.css | 10 ++ 8 files changed, 281 insertions(+), 152 deletions(-) diff --git a/content/know/concept/binomial-distribution/index.pdc b/content/know/concept/binomial-distribution/index.pdc index 70cc897..e644164 100644 --- a/content/know/concept/binomial-distribution/index.pdc +++ b/content/know/concept/binomial-distribution/index.pdc @@ -22,7 +22,7 @@ that $n$ out of the $N$ trials succeed: $$\begin{aligned} \boxed{ - P_N(n) = \binom{N}{n} \: p^n (1 - p)^{N - n} + P_N(n) = \binom{N}{n} \: p^n q^{N - n} } \end{aligned}$$ @@ -41,8 +41,20 @@ $$\begin{aligned} The remaining factor $p^n (1 - p)^{N - n}$ is then just the probability of attaining each microstate. -To find the mean number of successes $\mu$, -the trick is to treat $p$ and $q$ as independent: +The expected or mean number of successes $\mu$ after $N$ trials is as follows: + +$$\begin{aligned} + \boxed{ + \mu = N p + } +\end{aligned}$$ + +
+ + + +
+ +Meanwhile, we find the following variance $\sigma^2$, +with $\sigma$ being the standard deviation: $$\begin{aligned} \boxed{ - \mu = N p + \sigma^2 = N p q } \end{aligned}$$ -Next, we use the same trick to calculate $\overline{n^2}$ -(the mean of the squared number of successes): +
+ + + +
+ +As $N \to \infty$, the binomial distribution +turns into the continuous normal distribution: $$\begin{aligned} \boxed{ - \sigma^2 = N p q + \lim_{N \to \infty} P_N(n) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\!\Big(\!-\!\frac{(n - \mu)^2}{2 \sigma^2} \Big) } \end{aligned}$$ -As $N$ grows to infinity, the binomial distribution -turns into the continuous normal distribution. -We demonstrate this by taking the Taylor expansion of its -natural logarithm $\ln\!\big(P_N(n)\big)$ around the mean $\mu = Np$: +
+ + + +
## References diff --git a/content/know/concept/convolution-theorem/index.pdc b/content/know/concept/convolution-theorem/index.pdc index 9d1a666..1454cc0 100644 --- a/content/know/concept/convolution-theorem/index.pdc +++ b/content/know/concept/convolution-theorem/index.pdc @@ -32,7 +32,12 @@ $$\begin{aligned} } \end{aligned}$$ -To prove this, we expand the right-hand side of the theorem and +
+ + + +
## Laplace transform @@ -76,9 +83,14 @@ $$\begin{aligned} \boxed{\hat{\mathcal{L}}\{(f * g)(t)\} = \tilde{f}(s) \: \tilde{g}(s)} \end{aligned}$$ -We prove this by expanding the left-hand side. Note that the lower -integration limit is 0 instead of $-\infty$, because we set both $f(t)$ -and $g(t)$ to zero for $t < 0$: +
+ + + +
diff --git a/content/know/concept/curvilinear-coordinates/index.pdc b/content/know/concept/curvilinear-coordinates/index.pdc index e1c0465..925eda3 100644 --- a/content/know/concept/curvilinear-coordinates/index.pdc +++ b/content/know/concept/curvilinear-coordinates/index.pdc @@ -50,7 +50,7 @@ and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coor In the following subsections, we derive general formulae to convert expressions -from Cartesian coordinates in the new orthogonal system $(x_1, x_2, x_3)$. +from Cartesian coordinates to the new orthogonal system $(x_1, x_2, x_3)$. ## Basis vectors @@ -93,7 +93,26 @@ $$\begin{aligned} ## Gradient -For a given direction $\dd{\ell}$, we know that +In an orthogonal coordinate system, +the gradient $\nabla f$ of a scalar $f$ is as follows, +where $\vu{e}_1$, $\vu{e}_2$ and $\vu{e}_3$ +are the basis unit vectors respectively corresponding to $x_1$, $x_2$ and $x_3$: + +$$\begin{gathered} + \boxed{ + \nabla f + = \vu{e}_1 \frac{1}{h_1} \pdv{f}{x_1} + + \vu{e}_2 \frac{1}{h_2} \pdv{f}{x_2} + + \vu{e}_3 \frac{1}{h_3} \pdv{f}{x_3} + } +\end{gathered}$$ + +
+ + + +
## Divergence -Consider a vector $\vb{V}$ in the target coordinate system -with components $V_1$, $V_2$ and $V_3$: +The divergence of a vector $\vb{V} = \vu{e}_1 V_1 + \vu{e}_2 V_2 + \vu{e}_3 V_3$ +in an orthogonal system is given by: + +$$\begin{aligned} + \boxed{ + \nabla \cdot \vb{V} + = \frac{1}{h_1 h_2 h_3} + \Big( \pdv{(h_2 h_3 V_1)}{x_1} + \pdv{(h_1 h_3 V_2)}{x_2} + \pdv{(h_1 h_2 V_3)}{x_3} \Big) + } +\end{aligned}$$ + +
+ + + +
## Laplacian @@ -229,31 +252,55 @@ $$\begin{aligned} ## Curl -We find the curl in a similar way as the divergence. -Consider an arbitrary vector $\vb{V}$: +The curl of a vector $\vb{V}$ is as follows +in a general orthogonal curvilinear system: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \vb{V} + &= \frac{\vu{e}_1}{h_2 h_3} \Big( \pdv{(h_3 V_3)}{x_2} - \pdv{(h_2 V_2)}{x_3} \Big) + \\ + &+ \frac{\vu{e}_2}{h_1 h_3} \Big( \pdv{(h_1 V_1)}{x_3} - \pdv{(h_3 V_3)}{x_1} \Big) + \\ + &+ \frac{\vu{e}_3}{h_1 h_2} \Big( \pdv{(h_2 V_2)}{x_1} - \pdv{(h_1 V_1)}{x_2} \Big) + \end{aligned} + } +\end{aligned}$$ + +
+ + + +
## Differential elements diff --git a/content/know/concept/dirac-delta-function/index.pdc b/content/know/concept/dirac-delta-function/index.pdc index 76b6e97..9eecefd 100644 --- a/content/know/concept/dirac-delta-function/index.pdc +++ b/content/know/concept/dirac-delta-function/index.pdc @@ -21,7 +21,7 @@ defined to be 1: $$\begin{aligned} \boxed{ - \delta(x) = + \delta(x) \equiv \begin{cases} +\infty & \mathrm{if}\: x = 0 \\ 0 & \mathrm{if}\: x \neq 0 @@ -56,12 +56,10 @@ following integral, which appears very often in the context of [Fourier transforms](/know/concept/fourier-transform/): $$\begin{aligned} - \boxed{ - \delta(x) - %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} - = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} - \:\:\propto\:\: \hat{\mathcal{F}}\{1\} - } + \delta(x) + = \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} + = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} + \:\:\propto\:\: \hat{\mathcal{F}}\{1\} \end{aligned}$$ When the argument of $\delta(x)$ is scaled, the delta function is itself scaled: @@ -72,18 +70,22 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof.__ Because it is symmetric, $\delta(s x) = \delta(|s| x)$. Then by -substituting $\sigma = |s| x$:* +
+ + + +
-*__Q.E.D.__* - -An even more impressive property is the behaviour of the derivative of -$\delta(x)$: +An even more impressive property is the behaviour of the derivative of $\delta(x)$: $$\begin{aligned} \boxed{ @@ -91,16 +93,21 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof.__ Note which variable is used for the -differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:* +
+ + + +
This property also generalizes nicely for the higher-order derivatives: diff --git a/content/know/concept/heaviside-step-function/index.pdc b/content/know/concept/heaviside-step-function/index.pdc index 0471acf..dbbca6f 100644 --- a/content/know/concept/heaviside-step-function/index.pdc +++ b/content/know/concept/heaviside-step-function/index.pdc @@ -50,7 +50,23 @@ $$\begin{aligned} \end{aligned}$$ The [Fourier transform](/know/concept/fourier-transform/) -of $\Theta(t)$ is noteworthy. +of $\Theta(t)$ is as follows, +where $\pv{}$ is the Cauchy principal value, +$A$ and $s$ are constants from the FT's definition, +and $\mathrm{sgn}$ is the signum function: + +$$\begin{aligned} + \boxed{ + \tilde{\Theta}(\omega) + = \frac{A}{|s|} \Big( \pi \delta(\omega) + i \: \mathrm{sgn}(s) \pv{\frac{1}{\omega}} \Big) + } +\end{aligned}$$ + +
+ + + +
The use of $\pv{}$ without an integral is an abuse of notation, and means that this result only makes sense when wrapped in an integral. Formally, $\pv{\{1 / \omega\}}$ is a [Schwartz distribution](/know/concept/schwartz-distribution/). -We thus have: -$$\begin{aligned} - \boxed{ - \tilde{\Theta}(\omega) - = \frac{A}{|s|} \Big( \pi \delta(\omega) + i \: \mathrm{sgn}(s) \pv{\frac{1}{\omega}} \Big) - } -\end{aligned}$$ diff --git a/content/know/concept/holomorphic-function/index.pdc b/content/know/concept/holomorphic-function/index.pdc index 1077060..1c2f092 100644 --- a/content/know/concept/holomorphic-function/index.pdc +++ b/content/know/concept/holomorphic-function/index.pdc @@ -77,8 +77,12 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof__*. -*Just like before, we decompose $f(z)$ into its real and imaginary parts:* +
+ + + +
An interesting consequence is **Cauchy's integral formula**, which states that the value of $f(z)$ at an arbitrary point $z_0$ is @@ -109,11 +114,15 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof__*. -*Thanks to the integral theorem, we know that the shape and size +
+ + + +
Similarly, **Cauchy's differentiation formula**, or **Cauchy's integral formula for derivatives** @@ -143,16 +152,20 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof__*. -*By definition, the first derivative $f'(z)$ of a -holomorphic function $f(z)$ exists and is given by:* +
+ + + +
## Residue theorem @@ -205,24 +219,29 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof__*. *From the definition of a meromorphic function, +
+ + + +
This theorem might not seem very useful, but in fact, thanks to some clever mathematical magic, diff --git a/content/know/concept/parsevals-theorem/index.pdc b/content/know/concept/parsevals-theorem/index.pdc index 824afa6..9f440f2 100644 --- a/content/know/concept/parsevals-theorem/index.pdc +++ b/content/know/concept/parsevals-theorem/index.pdc @@ -17,24 +17,24 @@ markup: pandoc and the inner product of their [Fourier transforms](/know/concept/fourier-transform/) $\tilde{f}(k)$ and $\tilde{g}(k)$. There are two equivalent ways of stating it, -where $A$, $B$, and $s$ are constants from the Fourier transform's definition: +where $A$, $B$, and $s$ are constants from the FT's definition: $$\begin{aligned} \boxed{ - \braket{f(x)}{g(x)} = \frac{2 \pi B^2}{|s|} \braket*{\tilde{f}(k)}{\tilde{g}(k)} - } - \\ - \boxed{ - \braket*{\tilde{f}(k)}{\tilde{g}(k)} = \frac{2 \pi A^2}{|s|} \braket{f(x)}{g(x)} + \begin{aligned} + \braket{f(x)}{g(x)} &= \frac{2 \pi B^2}{|s|} \braket*{\tilde{f}(k)}{\tilde{g}(k)} + \\ + \braket*{\tilde{f}(k)}{\tilde{g}(k)} &= \frac{2 \pi A^2}{|s|} \braket{f(x)}{g(x)} + \end{aligned} } \end{aligned}$$ -For this reason, physicists like to define the Fourier transform -with $A\!=\!B\!=\!1 / \sqrt{2\pi}$ and $|s|\!=\!1$, because then it nicely -conserves the functions' normalization. - -To prove the theorem, we insert the inverse FT into the inner product -definition: +
+ + + +
+ +For this reason, physicists like to define the Fourier transform +with $A\!=\!B\!=\!1 / \sqrt{2\pi}$ and $|s|\!=\!1$, because then it nicely +conserves the functions' normalization. diff --git a/static/main.css b/static/main.css index 5283181..542790e 100644 --- a/static/main.css +++ b/static/main.css @@ -22,3 +22,13 @@ pre {filter:invert(100%);} @media (prefers-color-scheme: dark) { body {background:#222;filter:invert(100%);} } +.accordion { + display:block; + padding:0ch 1ch; + border-style:dotted; +} +input {display:none;} +label {color:#00f;cursor:pointer;} +input + label + .hidden {display:none;} +input:checked + label {display:none;} +input:checked + label + .hidden {display:block;} -- cgit v1.2.3