From c4ec16c8b34f84f0e95d2988df083c6d31ba21ef Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 10 Mar 2021 15:26:15 +0100 Subject: Expand knowledge base --- content/know/concept/bell-state/index.pdc | 93 +++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 content/know/concept/bell-state/index.pdc (limited to 'content/know/concept/bell-state') diff --git a/content/know/concept/bell-state/index.pdc b/content/know/concept/bell-state/index.pdc new file mode 100644 index 0000000..5e147e2 --- /dev/null +++ b/content/know/concept/bell-state/index.pdc @@ -0,0 +1,93 @@ +--- +title: "Bell state" +firstLetter: "B" +publishDate: 2021-03-09 +categories: +- Quantum mechanics +- Quantum information + +date: 2021-03-09T17:31:29+01:00 +draft: false +markup: pandoc +--- + +# Bell state + +In quantum information, the **Bell states** are a set of four two-qubit states +which are simple and useful examples of [quantum entanglement](/know/concept/quantum-entanglement/). +They are given by: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \ket*{\Phi^{\pm}} + &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{0}_B \pm \ket{1}_A \ket{1}_B \Big) + \\ + \ket*{\Psi^{\pm}} + &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{1}_B \pm \ket{1}_A \ket{0}_B \Big) + \end{aligned} + } +\end{aligned}$$ + +Where e.g. $\ket{0}_A \ket{1}_B = \ket{0}_A \otimes \ket{1}_B$ +is the tensor product of qubit $A$ in state $\ket{0}$ and $B$ in $\ket{1}$. +These states form an orthonormal basis for the two-qubit +[Hilbert space](/know/concept/hilbert-space/). + +More importantly, however, +is that the Bell states are maximally entangled, +which we prove here for $\ket*{\Phi^{+}}$. +Consider the following pure [density operator](/know/concept/density-operator/): + +$$\begin{aligned} + \hat{\rho} + = \ket*{\Phi^{+}} \bra*{\Phi^{+}} + &= \frac{1}{2} \Big( \ket{0}_A \ket{0}_B + \ket{1}_A \ket{1}_B \Big) \Big( \bra{0}_A \bra{0}_B + \bra{1}_A \bra{1}_B \Big) +\end{aligned}$$ + +The reduced density operator $\hat{\rho}_A$ of qubit $A$ is then calculated as follows: + +$$\begin{aligned} + \hat{\rho}_A + &= \Tr_B(\hat{\rho}) + = \sum_{b = 0, 1} \bra{b}_B \Big( \ket*{\Phi^{+}} \bra*{\Phi^{+}} \Big) \ket{b}_B + \\ + &= \sum_{b = 0, 1} \Big( \ket{0}_A \braket{b}{0}_B + \ket{1}_A \braket{b}{1}_B \Big) + \Big( \bra{0}_A \braket{0}{b}_B + \bra{1}_A \braket{1}{b}_B \Big) + \\ + &= \frac{1}{2} \Big( \ket{0}_A \bra{0}_A + \ket{1}_A \bra{1}_A \Big) + = \frac{1}{2} \hat{I} +\end{aligned}$$ + +This result is maximally mixed, therefore $\ket*{\Phi^{+}}$ is maximally entangled. +The same holds for the other three Bell states, +and is equally true for qubit $B$. + +This means that a measurement of qubit $A$ +has a 50-50 chance to yield $\ket{0}$ or $\ket{1}$. +However, due to the entanglement, +measuring $A$ also has consequences for qubit $B$: + +$$\begin{aligned} + \big| \bra{0}_A \bra{0}_B \: \ket*{\Phi^{+}} \big|^2 + &= \frac{1}{2} \Big( \braket{0}{0}_A \braket{0}{0}_B + \braket{0}{1}_A \braket{0}{1}_B \Big)^2 + = \frac{1}{2} + \\ + \big| \bra{0}_A \bra{1}_B \: \ket*{\Phi^{+}} \big|^2 + &= \frac{1}{2} \Big( \braket{0}{0}_A \braket{1}{0}_B + \braket{0}{1}_A \braket{1}{1}_B \Big)^2 + = 0 + \\ + \big| \bra{1}_A \bra{0}_B \: \ket*{\Phi^{+}} \big|^2 + &= \frac{1}{2} \Big( \braket{1}{0}_A \braket{0}{0}_B + \braket{1}{1}_A \braket{0}{1}_B \Big)^2 + = 0 + \\ + \big| \bra{1}_A \bra{1}_B \: \ket*{\Phi^{+}} \big|^2 + &= \frac{1}{2} \Big( \braket{1}{0}_A \braket{1}{0}_B + \braket{1}{1}_A \braket{1}{1}_B \Big)^2 + = \frac{1}{2} +\end{aligned}$$ + +As an example, if $A$ collapses into $\ket{0}$ due to a measurement, +then $B$ instantly also collapses into $\ket{0}$, never $\ket{1}$, +even if it was not measured. +This was a specific example for $\ket*{\Phi^{+}}$, +but analogous results can be found for the other Bell states. -- cgit v1.2.3