From 8a9fb5fef2a97af3274290e512816e1a4cac0c02 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Mon, 24 Jan 2022 19:29:00 +0100 Subject: Rewrite "Lindhard function", split off "dielectric function" --- content/know/concept/convolution-theorem/index.pdc | 30 +++++++++++----------- 1 file changed, 15 insertions(+), 15 deletions(-) (limited to 'content/know/concept/convolution-theorem/index.pdc') diff --git a/content/know/concept/convolution-theorem/index.pdc b/content/know/concept/convolution-theorem/index.pdc index 2712c21..a14e960 100644 --- a/content/know/concept/convolution-theorem/index.pdc +++ b/content/know/concept/convolution-theorem/index.pdc @@ -26,7 +26,7 @@ and $A$ and $B$ are constants from its definition: $$\begin{aligned} \boxed{ \begin{aligned} - A \cdot (f * g)(x) &= \hat{\mathcal{F}}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} \\ + A \cdot (f * g)(x) &= \hat{\mathcal{F}}{}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} \\ B \cdot (\tilde{f} * \tilde{g})(k) &= \hat{\mathcal{F}}\{f(x) \: g(x)\} \end{aligned} } @@ -41,12 +41,12 @@ We expand the right-hand side of the theorem and rearrange the integrals: $$\begin{aligned} - \hat{\mathcal{F}}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} - &= B \int_{-\infty}^\infty \tilde{f}(k) \Big( A \int_{-\infty}^\infty g(x') \exp(i s k x') \dd{x'} \Big) \exp(-i s k x) \dd{k} + \hat{\mathcal{F}}{}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} + &= B \int_{-\infty}^\infty \tilde{f}(k) \Big( A \int_{-\infty}^\infty g(x') \exp\!(i s k x') \dd{x'} \Big) \exp\!(-i s k x) \dd{k} \\ - &= A \int_{-\infty}^\infty g(x') \Big( B \int_{-\infty}^\infty \tilde{f}(k) \exp(- i s k (x - x')) \dd{k} \Big) \dd{x'} + &= A \int_{-\infty}^\infty g(x') \Big( B \int_{-\infty}^\infty \tilde{f}(k) \exp\!(- i s k (x - x')) \dd{k} \Big) \dd{x'} \\ - &= A \int_{-\infty}^\infty g(x') f(x - x') \dd{x'} + &= A \int_{-\infty}^\infty g(x') \: f(x - x') \dd{x'} = A \cdot (f * g)(x) \end{aligned}$$ @@ -55,11 +55,11 @@ this time starting from a product in the $x$-domain: $$\begin{aligned} \hat{\mathcal{F}}\{f(x) \: g(x)\} - &= A \int_{-\infty}^\infty f(x) \Big( B \int_{-\infty}^\infty \tilde{g}(k') \exp(- i s x k') \dd{k'} \Big) \exp(i s k x) \dd{x} + &= A \int_{-\infty}^\infty f(x) \Big( B \int_{-\infty}^\infty \tilde{g}(k') \exp\!(- i s x k') \dd{k'} \Big) \exp\!(i s k x) \dd{x} \\ - &= B \int_{-\infty}^\infty \tilde{g}(k') \Big( A \int_{-\infty}^\infty f(x) \exp(i s x (k - k')) \dd{x} \Big) \dd{k'} + &= B \int_{-\infty}^\infty \tilde{g}(k') \Big( A \int_{-\infty}^\infty f(x) \exp\!(i s x (k - k')) \dd{x} \Big) \dd{k'} \\ - &= B \int_{-\infty}^\infty \tilde{g}(k') \tilde{f}(k - k') \dd{k'} + &= B \int_{-\infty}^\infty \tilde{g}(k') \: \tilde{f}(k - k') \dd{k'} = B \cdot (\tilde{f} * \tilde{g})(k) \end{aligned}$$ @@ -73,10 +73,10 @@ the convolution theorem can also be stated using the [Laplace transform](/know/concept/laplace-transform/): $$\begin{aligned} - \boxed{(f * g)(t) = \hat{\mathcal{L}}^{-1}\{\tilde{f}(s) \: \tilde{g}(s)\}} + \boxed{(f * g)(t) = \hat{\mathcal{L}}{}^{-1}\{\tilde{f}(s) \: \tilde{g}(s)\}} \end{aligned}$$ -Because the inverse Laplace transform $\hat{\mathcal{L}}^{-1}$ is +Because the inverse Laplace transform $\hat{\mathcal{L}}{}^{-1}$ is unpleasant, the theorem is often stated using the forward transform instead: @@ -95,20 +95,20 @@ because we set both $f(t)$ and $g(t)$ to zero for $t < 0$: $$\begin{aligned} \hat{\mathcal{L}}\{(f * g)(t)\} - &= \int_0^\infty \Big( \int_0^\infty g(t') f(t - t') \dd{t'} \Big) \exp(- s t) \dd{t} + &= \int_0^\infty \Big( \int_0^\infty g(t') f(t - t') \dd{t'} \Big) \exp\!(- s t) \dd{t} \\ - &= \int_0^\infty \Big( \int_0^\infty f(t - t') \exp(- s t) \dd{t} \Big) g(t') \dd{t'} + &= \int_0^\infty \Big( \int_0^\infty f(t - t') \exp\!(- s t) \dd{t} \Big) g(t') \dd{t'} \end{aligned}$$ Then we define a new integration variable $\tau = t - t'$, yielding: $$\begin{aligned} \hat{\mathcal{L}}\{(f * g)(t)\} - &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp(- s (\tau + t')) \dd{\tau} \Big) g(t') \dd{t'} + &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp\!(- s (\tau + t')) \dd{\tau} \Big) g(t') \dd{t'} \\ - &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp(- s \tau) \dd{\tau} \Big) g(t') \exp(- s t') \dd{t'} + &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp\!(- s \tau) \dd{\tau} \Big) g(t') \exp\!(- s t') \dd{t'} \\ - &= \int_0^\infty \tilde{f}(s) g(t') \exp(- s t') \dd{t'} + &= \int_0^\infty \tilde{f}(s) \: g(t') \exp\!(- s t') \dd{t'} = \tilde{f}(s) \: \tilde{g}(s) \end{aligned}$$ -- cgit v1.2.3