From 9d741c2c762d8b629cef5ac5fbc26ca44c345a77 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 5 Mar 2021 16:41:32 +0100 Subject: Expand knowledge base --- .../know/concept/curvilinear-coordinates/index.pdc | 350 +++++++++++++++++++++ 1 file changed, 350 insertions(+) create mode 100644 content/know/concept/curvilinear-coordinates/index.pdc (limited to 'content/know/concept/curvilinear-coordinates/index.pdc') diff --git a/content/know/concept/curvilinear-coordinates/index.pdc b/content/know/concept/curvilinear-coordinates/index.pdc new file mode 100644 index 0000000..e1c0465 --- /dev/null +++ b/content/know/concept/curvilinear-coordinates/index.pdc @@ -0,0 +1,350 @@ +--- +title: "Curvilinear coordinates" +firstLetter: "C" +publishDate: 2021-03-03 +categories: +- Mathematics +- Physics + +date: 2021-03-03T19:47:34+01:00 +draft: false +markup: pandoc +--- + +# Curvilinear coordinates + +In a 3D coordinate system, the isosurface of a coordinate +(i.e. the surface where that coordinate is constant while the others vary) +is known as a **coordinate surface**, and the intersections of +the surfaces of different coordinates are called **coordinate lines**. + +A **curvilinear** coordinate system is one where at least one of the coordinate surfaces is curved, +e.g. in cylindrical coordinates the line between $r$ and $z$ is a circle. +If the coordinate surfaces are mutually perpendicular, +it is an **orthogonal** system, which is generally desirable. + +A useful attribute of a coordinate system is its **line element** $\dd{\ell}$, +which represents the differential element of a line in any direction. +For an orthogonal system, its square $\dd{\ell}^2$ is calculated +by taking the differential elements of the old Cartesian $(x, y, z)$ system +and writing them out in the new $(x_1, x_2, x_3)$ system. +The resulting expression will be of the form: + +$$\begin{aligned} + \boxed{ + \dd{\ell}^2 + = \dd{x}^2 + \dd{y}^2 + \dd{z}^2 + = h_1^2 \dd{x_1}^2 + h_2^2 \dd{x_2}^2 + h_3^2 \dd{x_3}^2 + } +\end{aligned}$$ + +Where $h_1$, $h_2$, and $h_3$ are called **scale factors**, +and need not be constants. +The equation above only contains quadratic terms +because the coordinate system is orthogonal by assumption. + +Examples of orthogonal curvilinear coordinate systems include +[spherical coordinates](/know/concept/spherical-coordinates/), +cylindrical coordinates, +and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coordinates/). + +In the following subsections, +we derive general formulae to convert expressions +from Cartesian coordinates in the new orthogonal system $(x_1, x_2, x_3)$. + + +## Basis vectors + +Consider the the vector form of the line element $\dd{\ell}$, +denoted by $\dd{\vu{\ell}}$ and expressed as: + +$$\begin{aligned} + \dd{\vu{\ell}} + = \vu{e}_x \dd{x} + \vu{e}_y \dd{y} + \vu{e}_z \dd{z} +\end{aligned}$$ + +We can expand the Cartesian differential elements, e.g. $\dd{y}$, +in the new basis as follows: + +$$\begin{aligned} + \dd{y} + = \pdv{y}{x_1} \dd{x_1} + \pdv{y}{x_2} \dd{x_2} + \pdv{y}{x_3} \dd{x_3} +\end{aligned}$$ + +If we write this out for $\dd{x}$, $\dd{y}$ and $\dd{z}$, +and group the terms according to $\dd{x}_1$, $\dd{x}_2$ and $\dd{x}_3$, +we can compare it the alternative form of $\dd{\vu{\ell}}$: + +$$\begin{aligned} + \dd{\vu{\ell}} + = \vu{e}_1 \:h_1 \dd{x_1} + \vu{e}_2 \:h_2 \dd{x_2} + \vu{e}_3 \:h_3 \dd{x_4} +\end{aligned}$$ + +From this, we can read off $\vu{e}_1$, $\vu{e}_2$ and $\vu{e}_3$. +Here we only give $\vu{e}_1$, since $\vu{e}_2$ and $\vu{e}_3$ are analogous: + +$$\begin{aligned} + \boxed{ + h_1 \vu{e}_1 + = \vu{e}_x \pdv{x}{x_1} + \vu{e}_y \pdv{y}{x_1} + \vu{e}_z \pdv{y}{x_1} + } +\end{aligned}$$ + + +## Gradient + +For a given direction $\dd{\ell}$, we know that +$\dv*{f}{\ell}$ is the component of $\nabla f$ in that direction: + +$$\begin{aligned} + \dv{f}{\ell} + = \pdv{f}{x} \dv{x}{\ell} + \pdv{f}{y} \dv{y}{\ell} + \pdv{f}{z} \dv{z}{\ell} + = \nabla f \cdot \bigg( \dv{x}{\ell}, \dv{y}{\ell}, \dv{z}{\ell} \bigg) + = \nabla f \cdot \vu{u} +\end{aligned}$$ + +Where $\vu{u}$ is simply a unit vector in the direction of $\dd{\ell}$. +We can thus find an expression for the gradient $\nabla f$ +by choosing $\dd{\ell}$ to be $h_1 \dd{x_1}$, $h_2 \dd{x_2}$ and $h_3 \dd{x_3}$ in turn: + +$$\begin{gathered} + \nabla f + = \vu{e}_1 \dv{x_1}{\ell} \pdv{f}{x_1} + + \vu{e}_2 \dv{x_2}{\ell} \pdv{f}{x_2} + + \vu{e}_3 \dv{x_3}{\ell} \pdv{f}{x_3} + \\ + \boxed{ + \nabla f + = \vu{e}_1 \frac{1}{h_1} \pdv{f}{x_1} + + \vu{e}_2 \frac{1}{h_2} \pdv{f}{x_2} + + \vu{e}_3 \frac{1}{h_3} \pdv{f}{x_3} + } +\end{gathered}$$ + +Where $\vu{e}_1$, $\vu{e}_2$ and $\vu{e}_3$ +are the basis unit vectors respectively corresponding to $x_1$, $x_2$ and $x_3$. + + +## Divergence + +Consider a vector $\vb{V}$ in the target coordinate system +with components $V_1$, $V_2$ and $V_3$: + +$$\begin{aligned} + \vb{V} + &= \vu{e}_1 V_1 + \vu{e}_2 V_2 + \vu{e}_3 V_3 + \\ + &= \vu{e}_1 \frac{1}{h_2 h_3} (h_2 h_3 V_1) + + \vu{e}_2 \frac{1}{h_1 h_3} (h_1 h_3 V_2) + + \vu{e}_3 \frac{1}{h_1 h_2} (h_1 h_2 V_3) +\end{aligned}$$ + +We take only the $\vu{e}_1$-component of this vector, +and expand its divergence using a vector identity, +where $f = h_2 h_3 V_1$ is a scalar +and $\vb{U} = \vu{e}_1 / (h_2 h_3)$ is a vector: + +$$\begin{gathered} + \nabla \cdot (\vb{U} \: f) + = \vb{U} \cdot (\nabla f) + (\nabla \cdot \vb{U}) \: f + \\ + \nabla \cdot \Big( \frac{\vu{e}_1}{h_2 h_3} (h_2 h_3 V_1) \Big) + = \frac{\vu{e}_1}{h_2 h_3} \cdot \Big( \nabla (h_2 h_3 V_1) \Big) + + \Big( \nabla \cdot \frac{\vu{e}_1}{h_2 h_3} \Big) (h_2 h_3 V_1) +\end{gathered}$$ + +The first term is straightforward to calculate +thanks to our preceding expression for the gradient. +Only the $\vu{e}_1$-component survives due to the dot product: + +$$\begin{aligned} + \frac{\vu{e}_1}{h_2 h_3} \cdot \Big( \nabla (h_2 h_3 V_1) \Big) + = \frac{\vu{e}_1}{h_1 h_2 h_3} \pdv{(h_2 h_3 V_1)}{x_1} +\end{aligned}$$ + +The second term is a bit more involved. +To begin with, we use the gradient formula to note that: + +$$\begin{aligned} + \nabla x_1 + = \frac{\vu{e}_1}{h_1} + \qquad \quad + \nabla x_2 + = \frac{\vu{e}_2}{h_2} + \qquad \quad + \nabla x_3 + = \frac{\vu{e}_3}{h_3} +\end{aligned}$$ + +Because $\vu{e}_2 \cross \vu{e}_3 = \vu{e}_1$ in an orthogonal basis, +we can get the vector whose divergence we want: + +$$\begin{aligned} + \nabla x_2 \cross \nabla x_3 + = \frac{\vu{e}_2}{h_2} \cross \frac{\vu{e}_3}{h_3} + = \frac{\vu{e}_1}{h_2 h_3} +\end{aligned}$$ + +We then apply the divergence and expand the expression using a vector identity. +In all cases, the curl of a gradient $\nabla \cross \nabla f$ is zero, so: + +$$\begin{aligned} + \nabla \cdot \frac{\vu{e}_1}{h_2 h_3} + = \nabla \cdot \big( \nabla x_2 \cross \nabla x_3 \big) + = \nabla x_3 \cdot (\nabla \cross \nabla x_2) - \nabla x_2 \cdot (\nabla \cross \nabla x_3) + = 0 +\end{aligned}$$ + +After repeating this procedure for the other components of $\vb{V}$, +we arrive at the following general expression for the divergence $\nabla \cdot \vb{V}$: + +$$\begin{aligned} + \boxed{ + \nabla \cdot \vb{V} + = \frac{1}{h_1 h_2 h_3} + \Big( \pdv{(h_2 h_3 V_1)}{x_1} + \pdv{(h_1 h_3 V_2)}{x_2} + \pdv{(h_1 h_2 V_3)}{x_3} \Big) + } +\end{aligned}$$ + + +## Laplacian + +The Laplacian $\nabla^2 f$ is simply $\nabla \cdot \nabla f$, +so we can find the general formula +by combining the two preceding results +for the gradient and the divergence: + +$$\begin{aligned} + \boxed{ + \nabla^2 f + = \frac{1}{h_1 h_2 h_3} + \bigg( + \pdv{x_1} \Big(\! \frac{h_2 h_3}{h_1} \pdv{f}{x_1} \!\Big) + + \pdv{x_2} \Big(\! \frac{h_1 h_3}{h_2} \pdv{f}{x_2} \!\Big) + + \pdv{x_3} \Big(\! \frac{h_1 h_2}{h_3} \pdv{f}{x_3} \!\Big) + \bigg) + } +\end{aligned}$$ + + +## Curl + +We find the curl in a similar way as the divergence. +Consider an arbitrary vector $\vb{V}$: + +$$\begin{aligned} + \vb{V} + = \vu{e}_1 V_1 + \vu{e}_2 V_2 + \vu{e}_3 V_3 + = \frac{\vu{e}_1}{h_1} (h_1 V_1) + \frac{\vu{e}_2}{h_2} (h_2 V_2) + \frac{\vu{e}_3}{h_3} (h_3 V_3) +\end{aligned}$$ + +We expand the curl of its $\vu{e}_1$-component using a vector identity, +where $f = h_1 V_1$ is a scalar and $\vb{U} = \vu{e}_1 / h_1$ is a vector: + +$$\begin{gathered} + \nabla \cross (\vb{U} \: f) + = (\nabla \cross \vb{U}) \: f - \vb{U} \cross (\nabla f) + \\ + \nabla \cross \Big( \frac{\vu{e}_1}{h_1} (h_1 V_1) \Big) + = \Big( \nabla \cross \frac{\vu{e}_1}{h_1} \Big) (h_1 V_1) - \frac{\vu{e}_1}{h_1} \cross \Big( \nabla (h_1 V_1) \Big) +\end{gathered}$$ + +Previously, when calculating the divergence, +we already showed that $\vu{e}_1 / h_1 = \nabla x_1$. +Because the curl of a gradient is zero, +the first term thus disappears, leaving only the second, +which contains a gradient turning out to be: + +$$\begin{aligned} + \nabla (h_1 V_1) + = \vu{e}_1 \frac{1}{h_1} \pdv{(h_1 V_1)}{x_1} + + \vu{e}_2 \frac{1}{h_2} \pdv{(h_1 V_1)}{x_2} + + \vu{e}_3 \frac{1}{h_3} \pdv{(h_1 V_1)}{x_3} +\end{aligned}$$ + +Consequently, the curl of the first component of $\vb{V}$ is as follows, +using the fact that $\vu{e}_1$, $\vu{e}_2$ and $\vu{e}_3$ +are related to each other by cross products: + +$$\begin{aligned} + \nabla \cross \Big( \frac{\vu{e}_1}{h_1} (h_1 V_1) \Big) + = - \frac{\vu{e}_1}{h_1} \cross \Big( \nabla (h_1 V_1) \Big) + = - \frac{\vu{e}_3}{h_1 h_2} \pdv{(h_1 V_1)}{x_2} + \frac{\vu{e}_2}{h_1 h_3} \pdv{(h_1 V_1)}{x_3} +\end{aligned}$$ + +If we go through the same process for the other components of $\vb{V}$ +and add the results together, we get the following expression for the curl $\nabla \cross \vb{V}$: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \vb{V} + &= \frac{\vu{e}_1}{h_2 h_3} \Big( \pdv{(h_3 V_3)}{x_2} - \pdv{(h_2 V_2)}{x_3} \Big) + \\ + &+ \frac{\vu{e}_2}{h_1 h_3} \Big( \pdv{(h_1 V_1)}{x_3} - \pdv{(h_3 V_3)}{x_1} \Big) + \\ + &+ \frac{\vu{e}_3}{h_1 h_2} \Big( \pdv{(h_2 V_2)}{x_1} - \pdv{(h_1 V_1)}{x_2} \Big) + \end{aligned} + } +\end{aligned}$$ + + +## Differential elements + +The point of the scale factors $h_1$, $h_2$ and $h_3$, as can seen from their derivation, +is to correct for "distortions" of the coordinates compared to the Cartesian system, +such that the line element $\dd{\ell}$ retains its length. +This property extends to the surface $\dd{S}$ and volume $\dd{V}$. + +When handling a differential volume in curvilinear coordinates, +e.g. for a volume integral, +the size of the box $\dd{V}$ must be corrected by the scale factors: + +$$\begin{aligned} + \boxed{ + \dd{V} + = \dd{x}\dd{y}\dd{z} + = h_1 h_2 h_3 \dd{x_1} \dd{x_2} \dd{x_3} + } +\end{aligned}$$ + +The same is true for the isosurfaces $\dd{S_1}$, $\dd{S_2}$ and $\dd{S_3}$ +where the coordinates $x_1$, $x_2$ and $x_3$ are respectively kept constant: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \dd{S_1} &= h_2 h_3 \dd{x_2} \dd{x_3} + \\ + \dd{S_2} &= h_1 h_3 \dd{x_1} \dd{x_3} + \\ + \dd{S_3} &= h_1 h_2 \dd{x_1} \dd{x_2} + \end{aligned} + } +\end{aligned}$$ + +Using the same logic, the normal vector element $\dd{\vu{S}}$ +of an arbitrary surface is given by: + +$$\begin{aligned} + \boxed{ + \dd{\vu{S}} + = \vu{e}_1 h_2 h_3 \dd{x_2} \dd{x_3} + \vu{e}_2 h_1 h_3 \dd{x_1} \dd{x_3} + \vu{e}_3 h_1 h_2 \dd{x_1} \dd{x_2} + } +\end{aligned}$$ + +Finally, the tangent vector element $\dd{\vu{\ell}}$ takes the following form: + +$$\begin{aligned} + \boxed{ + \dd{\vu{\ell}} + = \vu{e}_1 h_1 \dd{x_1} + \vu{e}_2 h_2 \dd{x_2} + \vu{e}_3 h_3 \dd{x_3} + } +\end{aligned}$$ + + + +## References +1. M.L. Boas, + *Mathematical methods in the physical sciences*, 2nd edition, + Wiley. -- cgit v1.2.3