From cc295b5da8e3db4417523a507caf106d5839d989 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 2 Jun 2021 13:28:53 +0200 Subject: Introduce collapsible proofs to some articles --- .../know/concept/curvilinear-coordinates/index.pdc | 154 +++++++++++++-------- 1 file changed, 95 insertions(+), 59 deletions(-) (limited to 'content/know/concept/curvilinear-coordinates') diff --git a/content/know/concept/curvilinear-coordinates/index.pdc b/content/know/concept/curvilinear-coordinates/index.pdc index e1c0465..925eda3 100644 --- a/content/know/concept/curvilinear-coordinates/index.pdc +++ b/content/know/concept/curvilinear-coordinates/index.pdc @@ -50,7 +50,7 @@ and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coor In the following subsections, we derive general formulae to convert expressions -from Cartesian coordinates in the new orthogonal system $(x_1, x_2, x_3)$. +from Cartesian coordinates to the new orthogonal system $(x_1, x_2, x_3)$. ## Basis vectors @@ -93,7 +93,26 @@ $$\begin{aligned} ## Gradient -For a given direction $\dd{\ell}$, we know that +In an orthogonal coordinate system, +the gradient $\nabla f$ of a scalar $f$ is as follows, +where $\vu{e}_1$, $\vu{e}_2$ and $\vu{e}_3$ +are the basis unit vectors respectively corresponding to $x_1$, $x_2$ and $x_3$: + +$$\begin{gathered} + \boxed{ + \nabla f + = \vu{e}_1 \frac{1}{h_1} \pdv{f}{x_1} + + \vu{e}_2 \frac{1}{h_2} \pdv{f}{x_2} + + \vu{e}_3 \frac{1}{h_3} \pdv{f}{x_3} + } +\end{gathered}$$ + +
+ + + +
## Divergence -Consider a vector $\vb{V}$ in the target coordinate system -with components $V_1$, $V_2$ and $V_3$: +The divergence of a vector $\vb{V} = \vu{e}_1 V_1 + \vu{e}_2 V_2 + \vu{e}_3 V_3$ +in an orthogonal system is given by: + +$$\begin{aligned} + \boxed{ + \nabla \cdot \vb{V} + = \frac{1}{h_1 h_2 h_3} + \Big( \pdv{(h_2 h_3 V_1)}{x_1} + \pdv{(h_1 h_3 V_2)}{x_2} + \pdv{(h_1 h_2 V_3)}{x_3} \Big) + } +\end{aligned}$$ + +
+ + + +
## Laplacian @@ -229,31 +252,55 @@ $$\begin{aligned} ## Curl -We find the curl in a similar way as the divergence. -Consider an arbitrary vector $\vb{V}$: +The curl of a vector $\vb{V}$ is as follows +in a general orthogonal curvilinear system: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \vb{V} + &= \frac{\vu{e}_1}{h_2 h_3} \Big( \pdv{(h_3 V_3)}{x_2} - \pdv{(h_2 V_2)}{x_3} \Big) + \\ + &+ \frac{\vu{e}_2}{h_1 h_3} \Big( \pdv{(h_1 V_1)}{x_3} - \pdv{(h_3 V_3)}{x_1} \Big) + \\ + &+ \frac{\vu{e}_3}{h_1 h_2} \Big( \pdv{(h_2 V_2)}{x_1} - \pdv{(h_1 V_1)}{x_2} \Big) + \end{aligned} + } +\end{aligned}$$ + +
+ + + +
## Differential elements -- cgit v1.2.3