From 966048bd3594eac4d3398992c8ad3143e290303b Mon Sep 17 00:00:00 2001
From: Prefetch
Date: Thu, 8 Apr 2021 16:49:46 +0200
Subject: Expand knowledge base, add /sources/
---
.../deutsch-jozsa-algorithm/deutsch-circuit.png | Bin 0 -> 8621 bytes
.../deutsch-jozsa-circuit.png | Bin 0 -> 18613 bytes
.../know/concept/deutsch-jozsa-algorithm/index.pdc | 234 +++++++++++++++++++++
3 files changed, 234 insertions(+)
create mode 100644 content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png
create mode 100644 content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png
create mode 100644 content/know/concept/deutsch-jozsa-algorithm/index.pdc
(limited to 'content/know/concept/deutsch-jozsa-algorithm')
diff --git a/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png b/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png
new file mode 100644
index 0000000..04f81fe
Binary files /dev/null and b/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png differ
diff --git a/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png b/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png
new file mode 100644
index 0000000..a43ae6a
Binary files /dev/null and b/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png differ
diff --git a/content/know/concept/deutsch-jozsa-algorithm/index.pdc b/content/know/concept/deutsch-jozsa-algorithm/index.pdc
new file mode 100644
index 0000000..b2b3d98
--- /dev/null
+++ b/content/know/concept/deutsch-jozsa-algorithm/index.pdc
@@ -0,0 +1,234 @@
+---
+title: "Deutsch-Jozsa algorithm"
+firstLetter: "D"
+publishDate: 2021-04-08
+categories:
+- Quantum information
+
+date: 2021-04-08T10:31:45+02:00
+draft: false
+markup: pandoc
+---
+
+# Deutsch-Jozsa algorithm
+
+The **Deutsch algorithm** and its extension, the **Deutsch-Jozsa algorithm**,
+were first to prove that quantum computers can
+solve certain problems more efficiently
+than any classical system.
+
+Given an unknown "black box" binary function $f(x)$ of one or more bits $x$,
+the goal is determine whether $f$ is
+**constant** (i.e. $f(x)$ is the same for all $x$)
+or **balanced** (i.e. exactly 50\% of all $x$-values yield $f(x) = 0$,
+and the other 50\% yield $f(x) = 1$).
+We can query $f$ as many times as we want with inputs of our choice,
+but we want to solve the problem using as few queries as possible.
+
+The problem is extremely artificial and of no practical use,
+but quantum computers can solve it with a single query,
+while classical computers need up to $2^{N - 1} + 1$ queries
+for an $N$-bit $x$.
+
+
+## Deutsch algorithm
+
+The Deutsch algorithm handles the simplest case,
+where $x$ is only a single bit.
+Only four $f$ exist:
+
++ **Constant**: $(f(0) = f(1) = 0)$ or $(f(0) = f(1) = 1)$.
++ **Balanced**: $(f(0) = 0, f(1) = 1)$, or $(f(0) = 1, f(1) = 0)$.
+
+In other words, we only need to determine if $f(0) = f(1)$ or $f(0) \neq f(1)$.
+To do this, we use the following quantum circuit,
+where $U_f$ is the oracle we query:
+
+
+
+
+
+Due to unitarity constraints,
+the action of $U_f$ is defined to be as follows,
+with $\oplus$ meaning XOR:
+
+$$\begin{aligned}
+ \ket{x} \ket{y}
+ \quad \to \boxed{U_f} \to \quad
+ \ket{x} \ket{y \oplus f(x)}
+\end{aligned}$$
+
+Starting on the left from two qubits $\ket{0}$ and $\ket{1}$,
+we apply the Hadamard gate $H$ to both:
+
+$$\begin{aligned}
+ \ket{0} \ket{1}
+ \quad \to \boxed{H^{\otimes 2}} \to \quad
+ \ket{+} \ket{-}
+ = \frac{1}{2} \Big( \ket{0} + \ket{1} \Big) \Big( \ket{0} - \ket{1} \Big)
+\end{aligned}$$
+
+Feeding this result into the oracle $U_f$ then leads us to:
+
+$$\begin{aligned}
+ \to \boxed{U_f} \to \quad
+ \frac{1}{2} \ket{0} \Big( \ket{0 \oplus f(0)} - \ket{1 \oplus f(0)} \Big)
+ + \frac{1}{2} \ket{1} \Big( \ket{0 \oplus f(1)} - \ket{1 \oplus f(1)} \Big)
+\end{aligned}$$
+
+The parenthesized superpositions can be reduced.
+Assuming that $f(b) = 0$, we notice:
+
+$$\begin{aligned}
+ \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)}
+ = \ket{0 \oplus 0} - \ket{1 \oplus 0}
+ = \ket{0} - \ket{1}
+\end{aligned}$$
+
+On the other hand, if we assume that $f(b) = 1$,
+we get the opposite result:
+
+$$\begin{aligned}
+ \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)}
+ = \ket{0 \oplus 1} - \ket{1 \oplus 1}
+ = - \big(\ket{0} - \ket{1}\big)
+\end{aligned}$$
+
+We can thus combine both cases, $f(b) = 0$ or $f(b) = 1$,
+into the following single expression:
+
+$$\begin{aligned}
+ \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)}
+ = (-1)^{f(b)} \big(\ket{0} - \ket{1}\big)
+\end{aligned}$$
+
+Using this, we rewrite the intermediate state of the quantum circuit like so:
+
+$$\begin{aligned}
+ \ket{0} \ket{1}
+ \quad \to \boxed{H^{\otimes 2}} \to \boxed{U_f} \to \quad
+ \frac{1}{2} \Big( (-1)^{f(0)} \ket{0} + (-1)^{f(1)} \ket{1} \Big) \Big( \ket{0} - \ket{1} \Big)
+\end{aligned}$$
+
+The second qubit in state $\ket{-}$ is garbage; it is no longer of interest.
+The first qubit is given by:
+
+$$\begin{aligned}
+ \frac{1}{\sqrt{2}} \Big( (-1)^{f(0)} \ket{0} + (-1)^{f(1)} \ket{1} \Big)
+ = \frac{(-1)^{f(0)}}{\sqrt{2}} \Big( \ket{0} + (-1)^{f(0) \oplus f(1)} \ket{1} \Big)
+\end{aligned}$$
+
+If $f$ is constant, then $f(0) \oplus f(1) = 0$,
+meaning this state is $(-1)^{f(0)} \ket{+}$.
+On the other hand, if $f$ is balanced, then $f(0) \oplus f(1) = 1$,
+meaning this state is $(-1)^{f(0)} \ket{-}$.
+Taking the Hadamard transform of this qubit therefore yields:
+
+$$\begin{aligned}
+ \to \boxed{H} \to \quad
+ (-1)^{f(0)} \ket{f(0) \oplus f(1)}
+\end{aligned}$$
+
+Depending on whether $f$ is constant or balanced,
+the mearurement outcome of this state will be $\ket{0}$ or $\ket{1}$
+with 100\% probability. We have solved the problem!
+
+Note that we only consulted the oracle (i.e. applied $U_f$) once.
+A classical computer would need to query it twice,
+once with input $x = 0$, and again with $x = 1$.
+
+
+## Full Deutsch-Jozsa algorithm
+
+The Deutsch-Jozsa algorithm generalizes the above to $N$-bit inputs $x$.
+We are promised that $f(x)$ is either constant or balanced;
+other possibilities are assumed to be impossible.
+This algorithm is then implemented by the following quantum circuit:
+
+
+
+
+
+There are $N$ qubits in initial state $\ket{0}$, and one in $\ket{1}$.
+For clarity, the oracle $U_f$ works like so:
+
+$$\begin{aligned}
+ \ket{x_1} \ket{x_2} \cdots \ket{x_N} \ket{y}
+ \quad \to \boxed{U_f} \to \quad
+ \ket{x_1} \cdots \ket{x_N} \ket{y \oplus f(x_1, ..., x_N)}
+\end{aligned}$$
+
+Applying the $N + 1$ Hadamard gates to the initial state
+yields the following superposition:
+
+$$\begin{aligned}
+ \ket{0}^{\otimes N} \ket{1}
+ \quad \to \boxed{H^{\otimes N + 1}} \to \quad
+ \ket{+}^{\otimes N} \ket{-}
+ = \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} \ket{x} \ket{-}
+\end{aligned}$$
+
+Where $\ket{x} = \ket{x_1} \cdots \ket{x_N}$ denotes a classical binary state.
+For example, if $x = 5 = 2^0 + 2^2$ in the summation,
+then $\ket{x} = \ket{1} \ket{0} \ket{1} \ket{0}^{\otimes N-3}$
+(from least to most significant).
+
+We give this state to the oracle,
+and, by the same logic as for the Deutsch algorithm,
+get back:
+
+$$\begin{aligned}
+ \to \boxed{U_f} \to \quad
+ \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)} \ket{x} \ket{-}
+\end{aligned}$$
+
+The last qubit $\ket{-}$ is garbage.
+Next, applying the Hadamard transform to the other $N$ gives:
+
+$$\begin{aligned}
+ \to \boxed{H^{\otimes N}} \to \quad
+ \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)}
+ \bigg( \frac{1}{\sqrt{2^N}} \sum_{y = 0}^{2^N - 1} (-1)^{x \cdot y} \ket{y} \bigg)
+\end{aligned}$$
+
+Where $x \cdot y$ is the bitwise dot product of the binary representations of $x$ and $y$,
+so, for example, if $N = 2$, then $x \cdot y = x_1 y_1 + x_2 y_2$.
+Note that the above expression has not been reduced at all;
+it follows from the definition of the Hadamard transform.
+We can rewrite it like so:
+
+$$\begin{aligned}
+ \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} \sum_{y = 0}^{2^N - 1} (-1)^{f(x) + x \cdot y} \ket{y}
+ = \sum_{y = 0}^{2^N - 1} \bigg( \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} (-1)^{f(x) + x \cdot y} \bigg) \ket{y}
+ = \sum_{y = 0}^{2^N - 1} c_y \ket{y}
+\end{aligned}$$
+
+The parenthesized expression can be interpreted as the coefficients
+of a superposition of several $y$-values.
+Therefore, the probability that a measurement yields $y = 0$,
+i.e. $\ket{y} = \ket{0}^{\otimes N}$, is:
+
+$$\begin{aligned}
+ |c_0|^2
+ = \bigg| \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)} \bigg|^2
+\end{aligned}$$
+
+The summation always contains an even number of terms, for all values of $N$.
+Consequently, if $f$ is constant, then $|c_0|^2 = |\!\pm\! 2^N / 2^N|^2 = 1$.
+Otherwise, if $f$ is balanced, all the terms cancel out, so we are left with $|c_0|^2 = 0$.
+In other words, we reach the same result as the Deutsch algorithm:
+we only need to measure the $N$ qubits once;
+$f$ is constant if and only if all are zero.
+
+The Deutsch-Jozsa algorithm needs only one oracle query to give an error-free result,
+whereas a classical computer needs $2^{N-1} + 1$ queries in the worst case;
+a revolutionary discovery.
+
+
+## References
+1. J.S. Neergaard-Nielsen,
+ *Quantum information: lectures notes*,
+ 2021, unpublished.
+2. S. Aaronson,
+ *Introduction to quantum information science: lecture notes*,
+ 2018, unpublished.
--
cgit v1.2.3