From cc295b5da8e3db4417523a507caf106d5839d989 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 2 Jun 2021 13:28:53 +0200 Subject: Introduce collapsible proofs to some articles --- .../know/concept/dirac-delta-function/index.pdc | 41 +++++++++++++--------- 1 file changed, 24 insertions(+), 17 deletions(-) (limited to 'content/know/concept/dirac-delta-function') diff --git a/content/know/concept/dirac-delta-function/index.pdc b/content/know/concept/dirac-delta-function/index.pdc index 76b6e97..9eecefd 100644 --- a/content/know/concept/dirac-delta-function/index.pdc +++ b/content/know/concept/dirac-delta-function/index.pdc @@ -21,7 +21,7 @@ defined to be 1: $$\begin{aligned} \boxed{ - \delta(x) = + \delta(x) \equiv \begin{cases} +\infty & \mathrm{if}\: x = 0 \\ 0 & \mathrm{if}\: x \neq 0 @@ -56,12 +56,10 @@ following integral, which appears very often in the context of [Fourier transforms](/know/concept/fourier-transform/): $$\begin{aligned} - \boxed{ - \delta(x) - %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} - = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} - \:\:\propto\:\: \hat{\mathcal{F}}\{1\} - } + \delta(x) + = \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} + = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} + \:\:\propto\:\: \hat{\mathcal{F}}\{1\} \end{aligned}$$ When the argument of $\delta(x)$ is scaled, the delta function is itself scaled: @@ -72,18 +70,22 @@ $$\begin{aligned} } \end{aligned}$$ -*__Proof.__ Because it is symmetric, $\delta(s x) = \delta(|s| x)$. Then by -substituting $\sigma = |s| x$:* +