From 942035bfe0c19be78efe1452d88b85490f035aab Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 12 Sep 2021 19:22:22 +0200 Subject: Expand knowledge base --- .../electromagnetic-wave-equation/index.pdc | 252 +++++++++++++++++++++ 1 file changed, 252 insertions(+) create mode 100644 content/know/concept/electromagnetic-wave-equation/index.pdc (limited to 'content/know/concept/electromagnetic-wave-equation/index.pdc') diff --git a/content/know/concept/electromagnetic-wave-equation/index.pdc b/content/know/concept/electromagnetic-wave-equation/index.pdc new file mode 100644 index 0000000..68fe062 --- /dev/null +++ b/content/know/concept/electromagnetic-wave-equation/index.pdc @@ -0,0 +1,252 @@ +--- +title: "Electromagnetic wave equation" +firstLetter: "E" +publishDate: 2021-09-09 +categories: +- Physics +- Electromagnetism +- Optics + +date: 2021-09-09T21:20:31+02:00 +draft: false +markup: pandoc +--- + +# Electromagnetic wave equation + +The electromagnetic wave equation describes +the propagation of light through various media. +Since an electromagnetic (light) wave consists of +an [electric field](/know/concept/electric-field/) +and a [magnetic field](/know/concept/magnetic-field/), +we need [Maxwell's equations](/know/concept/maxwells-equations/) +in order to derive the wave equation. + + +## Uniform medium + +We will use all of Maxwell's equations, +but we start with Ampère's circuital law for the "free" fields $\vb{H}$ and $\vb{D}$, +in the absence of a free current $\vb{J}_\mathrm{free} = 0$: + +$$\begin{aligned} + \nabla \cross \vb{H} + = \pdv{\vb{D}}{t} +\end{aligned}$$ + +We assume that the medium is isotropic, linear, +and uniform in all of space, such that: + +$$\begin{aligned} + \vb{D} = \varepsilon_0 \varepsilon_r \vb{E} + \qquad \quad + \vb{H} = \frac{1}{\mu_0 \mu_r} \vb{B} +\end{aligned}$$ + +Which, upon insertion into Ampère's law, +yields an equation relating $\vb{B}$ and $\vb{E}$. +This may seem to contradict Ampère's "total" law, +but keep in mind that $\vb{J}_\mathrm{bound} \neq 0$ here: + +$$\begin{aligned} + \nabla \cross \vb{B} + = \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t} +\end{aligned}$$ + +Now we take the curl, rearrange, +and substitute $\nabla \cross \vb{E}$ according to Faraday's law: + +$$\begin{aligned} + \nabla \cross (\nabla \cross \vb{B}) + %= \nabla \cross \Big( \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t} \Big) + = \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{t} (\nabla \cross \vb{E}) + %= \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{t} \Big( \!-\! \pdv{\vb{B}}{t} \Big) + = - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{B}}{t} +\end{aligned}$$ + +Using a vector identity, we rewrite the leftmost expression, +which can then be reduced thanks to Gauss' law for magnetism $\nabla \cdot \vb{B} = 0$: + +$$\begin{aligned} + - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{B}}{t} + &= \nabla (\nabla \cdot \vb{B}) - \nabla^2 \vb{B} + = - \nabla^2 \vb{B} +\end{aligned}$$ + +This describes $\vb{B}$. +Next, we repeat the process for $\vb{E}$: +taking the curl of Faraday's law yields: + +$$\begin{aligned} + \nabla \cross (\nabla \cross \vb{E}) + %= - \nabla \cross \pdv{\vb{B}}{t} + = - \pdv{t} (\nabla \cross \vb{B}) + %= - \pdv{t} \Big( \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t} \Big) + = - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t} +\end{aligned}$$ + +Which can be rewritten using same vector identity as before, +and then reduced by assuming that there is no net charge density $\rho = 0$ +in Gauss' law, such that $\nabla \cdot \vb{E} = 0$: + +$$\begin{aligned} + - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t} + &= \nabla (\nabla \cdot \vb{E}) - \nabla^2 \vb{E} + = - \nabla^2 \vb{E} +\end{aligned}$$ + +We thus arrive at the following two (implicitly coupled) +wave equations for $\vb{E}$ and $\vb{B}$, +where we have defined the phase velocity $v \equiv 1 / \sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}$: + +$$\begin{aligned} + \boxed{ + \pdv[2]{\vb{E}}{t} - \frac{1}{v^2} \nabla^2 \vb{E} + = 0 + } + \qquad \quad + \boxed{ + \pdv[2]{\vb{B}}{t} - \frac{1}{v^2} \nabla^2 \vb{B} + = 0 + } +\end{aligned}$$ + +Traditionally, it is said that the solutions are as follows, +where the wavenumber $|\vb{k}| = \omega / v$: + +$$\begin{aligned} + \vb{E}(\vb{r}, t) + &= \vb{E}_0 \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) + \\ + \vb{H}(\vb{r}, t) + &= \vb{H}_0 \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) +\end{aligned}$$ + +In fact, thanks to linearity, these solutions can be treated as +terms in a Fourier series, meaning that virtually +*any* function $f(\vb{k} \cdot \vb{r} - \omega t)$ is a valid solution. + + +## Non-uniform medium + +A useful generalization is to allow spatial change +in the relative permittivity $\varepsilon_r(\vb{r})$ +and the relative permeability $\mu_r(\vb{r})$. +We still assume that the medium is linear and isotropic, so: + +$$\begin{aligned} + \vb{D} + = \varepsilon_0 \varepsilon_r(\vb{r}) \vb{E} + \qquad \quad + \vb{B} + = \mu_0 \mu_r(\vb{r}) \vb{H} +\end{aligned}$$ + +Inserting these expressions into Faraday's and Ampère's laws +respectively yields: + +$$\begin{aligned} + \nabla \cross \vb{E} + = - \mu_0 \mu_r(\vb{r}) \pdv{\vb{H}}{t} + \qquad \quad + \nabla \cross \vb{H} + = \varepsilon_0 \varepsilon_r(\vb{r}) \pdv{\vb{E}}{t} +\end{aligned}$$ + +We then divide Ampère's law by $\varepsilon_r(\vb{r})$, +take the curl, and substitute Faraday's law, giving: + +$$\begin{aligned} + \nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big) + = \varepsilon_0 \pdv{t} (\nabla \cross \vb{E}) + = - \mu_0 \mu_r \varepsilon_0 \pdv[2]{\vb{H}}{t} +\end{aligned}$$ + +Next, we exploit linearity by decomposing $\vb{H}$ and $\vb{E}$ +into Fourier series, with terms given by: + +$$\begin{aligned} + \vb{H}(\vb{r}, t) + = \vb{H}(\vb{r}) \exp\!(- i \omega t) + \qquad \quad + \vb{E}(\vb{r}, t) + = \vb{E}(\vb{r}) \exp\!(- i \omega t) +\end{aligned}$$ + +By inserting this ansatz into the equation, +we can remove the explicit time dependence: + +$$\begin{aligned} + \nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big) \exp\!(- i \omega t) + = \mu_0 \varepsilon_0 \omega^2 \mu_r \vb{H} \exp\!(- i \omega t) +\end{aligned}$$ + +Dividing out $\exp\!(- i \omega t)$, +we arrive at an eigenvalue problem for $\omega^2$, +with $c = 1 / \sqrt{\mu_0 \varepsilon_0}$: + +$$\begin{aligned} + \boxed{ + \nabla \cross \Big( \frac{1}{\varepsilon_r(\vb{r})} \nabla \cross \vb{H}(\vb{r}) \Big) + = \Big( \frac{\omega}{c} \Big)^2 \mu_r(\vb{r}) \vb{H}(\vb{r}) + } +\end{aligned}$$ + +Compared to a uniform medium, $\omega$ is often not arbitrary here: +there are discrete eigenvalues $\omega$, +corresponding to discrete **modes** $\vb{H}(\vb{r})$. + +Next, we go through the same process to find an equation for $\vb{E}$. +Starting from Faraday's law, we divide by $\mu_r(\vb{r})$, +take the curl, and insert Ampère's law: + +$$\begin{aligned} + \nabla \cross \Big( \frac{1}{\mu_r} \nabla \cross \vb{E} \Big) + = - \mu_0 \pdv{t} (\nabla \cross \vb{H}) + = - \mu_0 \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t} +\end{aligned}$$ + +Then, by replacing $\vb{E}(\vb{r}, t)$ with our plane-wave ansatz, +we remove the time dependence: + +$$\begin{aligned} + \nabla \cross \Big( \frac{1}{\mu_r} \nabla \cross \vb{E} \Big) \exp\!(- i \omega t) + = - \mu_0 \varepsilon_0 \omega^2 \varepsilon_r \vb{E} \exp\!(- i \omega t) +\end{aligned}$$ + +Which, after dividing out $\exp\!(- i \omega t)$, +yields an analogous eigenvalue problem with $\vb{E}(r)$: + +$$\begin{aligned} + \boxed{ + \nabla \cross \Big( \frac{1}{\mu_r(\vb{r})} \nabla \cross \vb{E}(\vb{r}) \Big) + = \Big( \frac{\omega}{c} \Big)^2 \varepsilon_r(\vb{r}) \vb{E}(\vb{r}) + } +\end{aligned}$$ + +Usually, it is a reasonable approximation +to say $\mu_r(\vb{r}) = 1$, +in which case the equation for $\vb{H}(\vb{r})$ +becomes a Hermitian eigenvalue problem, +and is thus easier to solve than for $\vb{E}(\vb{r})$. + +Keep in mind, however, that in any case, +the solutions $\vb{H}(\vb{r})$ and/or $\vb{E}(\vb{r})$ +must satisfy the two Maxwell's equations that were not explicitly used: + +$$\begin{aligned} + \nabla \cdot (\varepsilon_r \vb{E}) = 0 + \qquad \quad + \nabla \cdot (\mu_r \vb{H}) = 0 +\end{aligned}$$ + +This is equivalent to demanding that the resulting waves are *transverse*, +or in other words, +the wavevector $\vb{k}$ must be perpendicular to +the amplitudes $\vb{H}_0$ and $\vb{E}_0$. + + +## References +1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, + *Photonic crystals: molding the flow of light*, + 2nd edition, Princeton. -- cgit v1.2.3