From 966048bd3594eac4d3398992c8ad3143e290303b Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 8 Apr 2021 16:49:46 +0200 Subject: Expand knowledge base, add /sources/ --- content/know/concept/euler-equations/index.pdc | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'content/know/concept/euler-equations/index.pdc') diff --git a/content/know/concept/euler-equations/index.pdc b/content/know/concept/euler-equations/index.pdc index 37d2fea..cedfd93 100644 --- a/content/know/concept/euler-equations/index.pdc +++ b/content/know/concept/euler-equations/index.pdc @@ -149,7 +149,7 @@ to which we apply a vector identity: $$\begin{aligned} 0 = \dv{\rho}{t} + \nabla \cdot (\rho \va{v}) - = \dv{\rho}{t} + \va{v} \cdot \nabla \rho + \rho (\nabla \cdot \va{v}) + = \dv{\rho}{t} + (\va{v} \cdot \nabla) \rho + \rho (\nabla \cdot \va{v}) \end{aligned}$$ Thanks to incompressibility, the last term disappears, @@ -159,7 +159,7 @@ $$\begin{aligned} \boxed{ 0 = \frac{\mathrm{D} \rho}{\mathrm{D} t} - = \dv{\rho}{t} + \va{v} \cdot \nabla \rho + = \dv{\rho}{t} + (\va{v} \cdot \nabla) \rho } \end{aligned}$$ -- cgit v1.2.3