From 805718880c936d778c99fe0d5cfdb238342a83c7 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 1 Jul 2021 22:21:26 +0200 Subject: Expand knowledge base --- content/know/concept/fourier-transform/index.pdc | 150 +++++++++++++++++++++-- 1 file changed, 138 insertions(+), 12 deletions(-) (limited to 'content/know/concept/fourier-transform/index.pdc') diff --git a/content/know/concept/fourier-transform/index.pdc b/content/know/concept/fourier-transform/index.pdc index 3be47ff..1d1e27d 100644 --- a/content/know/concept/fourier-transform/index.pdc +++ b/content/know/concept/fourier-transform/index.pdc @@ -25,8 +25,8 @@ The **forward** FT is defined as follows, where $A$, $B$, and $s$ are unspecifie $$\begin{aligned} \boxed{ \tilde{f}(k) - = \hat{\mathcal{F}}\{f(x)\} - = A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x} + \equiv \hat{\mathcal{F}}\{f(x)\} + \equiv A \int_{-\infty}^\infty f(x) \exp\!(i s k x) \dd{x} } \end{aligned}$$ @@ -35,8 +35,8 @@ The **inverse Fourier transform** (iFT) undoes the forward FT operation: $$\begin{aligned} \boxed{ f(x) - = \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\} - = B \int_{-\infty}^\infty \tilde{f}(k) \exp(- i s k x) \dd{k} + \equiv \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\} + \equiv B \int_{-\infty}^\infty \tilde{f}(k) \exp\!(- i s k x) \dd{k} } \end{aligned}$$ @@ -46,9 +46,9 @@ again. Let us verify this, by rearranging the integrals to get the $$\begin{aligned} \hat{\mathcal{F}}^{-1}\{\hat{\mathcal{F}}\{f(x)\}\} - &= A B \int_{-\infty}^\infty \exp(-i s k x) \int_{-\infty}^\infty f(x') \exp(i s k x') \dd{x'} \dd{k} + &= A B \int_{-\infty}^\infty \exp\!(-i s k x) \int_{-\infty}^\infty f(x') \exp\!(i s k x') \dd{x'} \dd{k} \\ - &= 2 \pi A B \int_{-\infty}^\infty f(x') \Big(\frac{1}{2\pi} \int_{-\infty}^\infty \exp(i s k (x' - x)) \dd{k} \Big) \dd{x'} + &= 2 \pi A B \int_{-\infty}^\infty f(x') \Big(\frac{1}{2\pi} \int_{-\infty}^\infty \exp\!(i s k (x' - x)) \dd{k} \Big) \dd{x'} \\ &= 2 \pi A B \int_{-\infty}^\infty f(x') \: \delta(s(x' - x)) \dd{x'} = \frac{2 \pi A B}{|s|} f(x) @@ -74,15 +74,15 @@ on whether the analysis is for forward ($s > 0$) or backward-propagating ## Derivatives -The FT of a derivative has a very interesting property. +The FT of a derivative has a very useful property. Below, after integrating by parts, we remove the boundary term by assuming that $f(x)$ is localized, i.e. $f(x) \to 0$ for $x \to \pm \infty$: $$\begin{aligned} \hat{\mathcal{F}}\{f'(x)\} - &= A \int_{-\infty}^\infty f'(x) \exp(i s k x) \dd{x} + &= A \int_{-\infty}^\infty f'(x) \exp\!(i s k x) \dd{x} \\ - &= A \big[ f(x) \exp(i s k x) \big]_{-\infty}^\infty - i s k A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x} + &= A \big[ f(x) \exp\!(i s k x) \big]_{-\infty}^\infty - i s k A \int_{-\infty}^\infty f(x) \exp\!(i s k x) \dd{x} \\ &= (- i s k) \tilde{f}(k) \end{aligned}$$ @@ -109,14 +109,140 @@ $$\begin{aligned} Derivatives in the frequency domain have an analogous property: +$$\begin{aligned} + \dv[n]{\tilde{f}}{k} + &= A \dv[n]{k} \int_{-\infty}^\infty f(x) \exp\!(i s k x) \dd{x} + \\ + &= A \int_{-\infty}^\infty (i s x)^n f(x) \exp\!(i s k x) \dd{x} + = \hat{\mathcal{F}}\{ (i s x)^n f(x) \} +\end{aligned}$$ + + +## Multiple dimensions + +The Fourier transform is straightforward to generalize to $N$ dimensions. +Given a scalar field $f(\vb{x})$ with $\vb{x} = (x_1, ..., x_N)$, +its FT $\tilde{f}(\vb{k})$ is defined as follows: + +$$\begin{aligned} + \boxed{ + \tilde{f}(\vb{k}) + \equiv \hat{\mathcal{F}}\{f(\vb{x})\} + \equiv A \int_{-\infty}^\infty f(\vb{x}) \exp\!(i s \vb{k} \cdot \vb{x}) \dd[N]{\vb{x}} + } +\end{aligned}$$ + +Where the wavevector $\vb{k} = (k_1, ..., k_N)$. +Likewise, the inverse FT is given by: + $$\begin{aligned} \boxed{ - \dv[n]{\tilde{f}}{k} - = A \int_{-\infty}^\infty (i s x)^n f(x) \exp(i s k x) \dd{x} - = \hat{\mathcal{F}}\{ (i s x)^n f(x) \} + f(\vb{x}) + \equiv \hat{\mathcal{F}}^{-1}\{\tilde{f}(\vb{k})\} + \equiv B \int_{-\infty}^\infty \tilde{f}(\vb{k}) \exp\!(- i s \vb{k} \cdot \vb{x}) \dd[N]{\vb{k}} } \end{aligned}$$ +In practice, in $N$D, there is not as much disagreement about +the constants $A$, $B$ and $s$ as in 1D: +typically $A = 1$ and $B = 1 / (2 \pi)^N$, with $s = \pm 1$. +Any choice will do, as long as: + +$$\begin{aligned} + \boxed{ + A B + = \bigg( \frac{|s|}{2 \pi} \bigg)^{\!N} + } +\end{aligned}$$ + +