From c0d352dd0f66b47ee91fb96eaf320f895fa78790 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 14 Nov 2021 17:54:04 +0100 Subject: Expand knowledge base --- .../know/concept/holomorphic-function/index.pdc | 57 ---------------------- 1 file changed, 57 deletions(-) (limited to 'content/know/concept/holomorphic-function') diff --git a/content/know/concept/holomorphic-function/index.pdc b/content/know/concept/holomorphic-function/index.pdc index 4b7221c..3e3984a 100644 --- a/content/know/concept/holomorphic-function/index.pdc +++ b/content/know/concept/holomorphic-function/index.pdc @@ -193,60 +193,3 @@ this proof works inductively for all higher orders $n$. - -## Residue theorem - -A function $f(z)$ is **meromorphic** if it is holomorphic except in -a finite number of **simple poles**, which are points $z_p$ where -$f(z_p)$ diverges, but where the product $(z - z_p) f(z)$ is non-zero and -still holomorphic close to $z_p$. - -The **residue** $R_p$ of a simple pole $z_p$ is defined as follows, and -represents the rate at which $f(z)$ diverges close to $z_p$: - -$$\begin{aligned} - \boxed{ - R_p = \lim_{z \to z_p} (z - z_p) f(z) - } -\end{aligned}$$ - -**Cauchy's residue theorem** generalizes Cauchy's integral theorem -to meromorphic functions, and states that the integral of a contour $C$ -depends on the simple poles $p$ it encloses: - -$$\begin{aligned} - \boxed{ - \oint_C f(z) \dd{z} = i 2 \pi \sum_{p} R_p - } -\end{aligned}$$ - -