From e5f44d97c6652f262c82b5c796c07a7a22a00e90 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 4 Jul 2021 20:02:27 +0200 Subject: Expand knowledge base --- content/know/concept/laplace-transform/index.pdc | 125 +++++++++++++++++++++++ 1 file changed, 125 insertions(+) create mode 100644 content/know/concept/laplace-transform/index.pdc (limited to 'content/know/concept/laplace-transform') diff --git a/content/know/concept/laplace-transform/index.pdc b/content/know/concept/laplace-transform/index.pdc new file mode 100644 index 0000000..bd7673b --- /dev/null +++ b/content/know/concept/laplace-transform/index.pdc @@ -0,0 +1,125 @@ +--- +title: "Laplace transform" +firstLetter: "L" +publishDate: 2021-07-02 +categories: +- Mathematics +- Physics + +date: 2021-07-02T15:48:30+02:00 +draft: false +markup: pandoc +--- + +# Laplace transform + +The **Laplace transform** is an integral transform +that losslessly converts a function $f(t)$ of a real variable $t$, +into a function $\tilde{f}(s)$ of a complex variable $s$, +where $s$ is sometimes called the **complex frequency**, +analogously to the [Fourier transform](/know/concept/fourier-transform/). +The transform is defined as follows: + +$$\begin{aligned} + \boxed{ + \tilde{f}(s) + \equiv \hat{\mathcal{L}}\{f(t)\} + \equiv \int_0^\infty f(t) \exp\!(- s t) \dd{t} + } +\end{aligned}$$ + +Depending on $f(t)$, this integral may diverge. +This is solved by restricting the domain of $\tilde{f}(s)$ +to $s$ where $\mathrm{Re}\{s\} > s_0$, +for an $s_0$ large enough to compensate for the growth of $f(t)$. + + +## Derivatives + +The derivative of a transformed function is the transform +of the original mutliplied by its variable. +This is especially useful for transforming ODEs with variable coefficients: + +$$\begin{aligned} + \boxed{ + \tilde{f}'(s) = - \hat{\mathcal{L}}\{t f(t)\} + } +\end{aligned}$$ + +This property generalizes nicely to higher-order derivatives of $s$, so: + +$$\begin{aligned} + \boxed{ + \dv[n]{\tilde{f}}{s} = (-1)^n \hat{\mathcal{L}}\{t^n f(t)\} + } +\end{aligned}$$ + +