From 8f883023e6354648727479aec029f418b30ef2dc Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 15 Apr 2021 20:53:17 +0200 Subject: Expand knowledge base --- .../know/concept/navier-stokes-equations/index.pdc | 134 +++++++++++++++++++++ 1 file changed, 134 insertions(+) create mode 100644 content/know/concept/navier-stokes-equations/index.pdc (limited to 'content/know/concept/navier-stokes-equations') diff --git a/content/know/concept/navier-stokes-equations/index.pdc b/content/know/concept/navier-stokes-equations/index.pdc new file mode 100644 index 0000000..7256b7e --- /dev/null +++ b/content/know/concept/navier-stokes-equations/index.pdc @@ -0,0 +1,134 @@ +--- +title: "Navier-Stokes equations" +firstLetter: "N" +publishDate: 2021-04-12 +categories: +- Physics +- Fluid mechanics +- Fluid dynamics + +date: 2021-04-12T13:14:09+02:00 +draft: false +markup: pandoc +--- + +# Navier-Stokes equations + +While the [Euler equations](/know/concept/euler-equations/) govern *ideal* "dry" fluids, +the **Navier-Stokes equations** govern *nonideal* "wet" fluids, +i.e. fluids with nonzero [viscosity](/know/concept/viscosity/). + + +## Incompressible fluid + +First of all, we can reuse the incompressibility condition for ideal fluids, without modifications: + +$$\begin{aligned} + \boxed{ + \nabla \cdot \va{v} = 0 + } +\end{aligned}$$ + +Furthermore, from the derivation of the Euler equations, +we know that Newton's second law can be written as follows, +for an infinitesimal particle of the fluid: + +$$\begin{aligned} + \rho \frac{\mathrm{D} \va{v}}{\mathrm{D} t} + = \va{f^*} +\end{aligned}$$ + +$\mathrm{D}/\mathrm{D}t$ is the [material derivative](/know/concept/material-derivative/), +$\rho$ is the density, and $\va{f^*}$ is the effective force density, +expressed in terms of an external body force $\va{f}$ (e.g. gravity) +and the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/) $\hat{\sigma}$: + +$$\begin{aligned} + \va{f^*} + = \va{f} + \nabla \cdot \hat{\sigma}^\top +\end{aligned}$$ + +From the definition of viscosity, +the stress tensor's elements are like so for a Newtonian fluid: + +$$\begin{aligned} + \sigma_{ij} + = - p \delta_{ij} + \eta (\nabla_i v_j + \nabla_j v_i) +\end{aligned}$$ + +Where $\eta$ is the dynamic viscosity. +Inserting this, we calculate $\nabla \cdot \hat{\sigma}^\top$ in index notation: + +$$\begin{aligned} + \big( \nabla \cdot \hat{\sigma}^\top \big)_i + = \sum_{j} \nabla_j \sigma_{ij} + &= \sum_{j} \Big( \!-\! \delta_{ij} \nabla_j p + \eta (\nabla_i \nabla_j v_j + \nabla_j^2 v_i) \Big) + \\ + &= - \nabla_i p + \eta \nabla_i \sum_{j} \nabla_j v_j + \eta \sum_{j} \nabla_j^2 v_i +\end{aligned}$$ + +Thanks to incompressibility $\nabla \cdot \va{v} = 0$, +the middle term vanishes, leaving us with: + +$$\begin{aligned} + \va{f^*} + = \va{f} - \nabla p + \eta \nabla^2 \va{v} +\end{aligned}$$ + +We assume that the only body force is gravity $\va{f} = \rho \va{g}$. +Newton's second law then becomes: + +$$\begin{aligned} + \rho \frac{\mathrm{D} \va{v}}{\mathrm{D} t} + = \rho \va{g} - \nabla p + \eta \nabla^2 \va{v} +\end{aligned}$$ + +Dividing by $\rho$, and replacing $\eta$ +with the kinematic viscosity $\nu = \eta/\rho$, +yields the main equation: + +$$\begin{aligned} + \boxed{ + \frac{\mathrm{D} \va{v}}{\mathrm{D} t} + = \va{g} - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v} + } +\end{aligned}$$ + +Finally, we can optionally allow incompressible fluids +with an inhomogeneous "lumpy" density $\rho$, +by demanding conservation of mass, +just like for the Euler equations: + +$$\begin{aligned} + \boxed{ + \frac{\mathrm{D} \rho}{\mathrm{D} t} + = 0 + } +\end{aligned}$$ + +Putting it all together, the Navier-Stokes equations for an incompressible fluid are given by: + +$$\begin{aligned} + \boxed{ + \frac{\mathrm{D} \va{v}}{\mathrm{D} t} + = \va{g} - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v} + \qquad + \nabla \cdot \va{v} = 0 + \qquad + \frac{\mathrm{D} \rho}{\mathrm{D} t} + = 0 + } +\end{aligned}$$ + +Due to the definition of viscosity $\nu$ as the molecular "stickiness", +we have boundary conditions for the velocity field $\va{v}$: +at any interface, $\va{v}$ must be continuous. +Likewise, Newton's third law demands that the normal component +of stress $\hat{\sigma} \cdot \vu{n}$ is continuous there. + + + +## References +1. B. Lautrup, + *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, + CRC Press. -- cgit v1.2.3