From 03accd13c0a6ec4de2d8001edf3ce7553f831160 Mon Sep 17 00:00:00 2001
From: Prefetch
Date: Tue, 27 Sep 2022 21:20:05 +0200
Subject: Clean up CSS, minor design changes

---
 content/know/concept/optical-wave-breaking/index.pdc | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

(limited to 'content/know/concept/optical-wave-breaking')

diff --git a/content/know/concept/optical-wave-breaking/index.pdc b/content/know/concept/optical-wave-breaking/index.pdc
index 30305f5..ecd5a4f 100644
--- a/content/know/concept/optical-wave-breaking/index.pdc
+++ b/content/know/concept/optical-wave-breaking/index.pdc
@@ -40,7 +40,7 @@ small waves start "falling off" the edge of the pulse,
 hence the name *wave breaking*:
 
 <a href="pheno-break-inst.jpg">
-<img src="pheno-break-inst-small.jpg">
+<img src="pheno-break-inst-small.jpg" style="width:100%">
 </a>
 
 Several interesting things happen around this moment.
@@ -59,7 +59,7 @@ which eventually melt together, leading to a trapezoid shape in the $t$-domain.
 Dispersive broadening then continues normally:
 
 <a href="pheno-break-sgram.jpg">
-<img src="pheno-break-sgram-small.jpg" style="width:80%;display:block;margin:auto;">
+<img src="pheno-break-sgram-small.jpg" style="width:80%">
 </a>
 
 We call the distance at which the wave breaks $L_\mathrm{WB}$,
@@ -189,7 +189,7 @@ This prediction for $L_\mathrm{WB}$ appears to agree well
 with the OWB observed in the simulation:
 
 <a href="pheno-break.jpg">
-<img src="pheno-break-small.jpg">
+<img src="pheno-break-small.jpg" style="width:100%">
 </a>
 
 Because all spectral broadening up to $L_\mathrm{WB}$ is caused by SPM,
-- 
cgit v1.2.3