From 93c8b6e86aeafb2f1b7f6b4d39049276ebbcc91c Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 5 May 2021 20:18:57 +0200 Subject: Expand knowledge base --- .../concept/quantum-fourier-transform/index.pdc | 206 +++++++++++++++++++++ .../qft-circuit-noswap.png | Bin 0 -> 44010 bytes .../quantum-fourier-transform/qft-circuit-swap.png | Bin 0 -> 43953 bytes 3 files changed, 206 insertions(+) create mode 100644 content/know/concept/quantum-fourier-transform/index.pdc create mode 100644 content/know/concept/quantum-fourier-transform/qft-circuit-noswap.png create mode 100644 content/know/concept/quantum-fourier-transform/qft-circuit-swap.png (limited to 'content/know/concept/quantum-fourier-transform') diff --git a/content/know/concept/quantum-fourier-transform/index.pdc b/content/know/concept/quantum-fourier-transform/index.pdc new file mode 100644 index 0000000..627f2de --- /dev/null +++ b/content/know/concept/quantum-fourier-transform/index.pdc @@ -0,0 +1,206 @@ +--- +title: "Quantum Fourier transform" +firstLetter: "Q" +publishDate: 2021-05-01 +categories: +- Algorithms +- Quantum information + +date: 2021-05-01T11:30:00+02:00 +draft: false +markup: pandoc +--- + +# Quantum Fourier transform + +The **quantum Fourier transform (QFT)** is a quantum counterpart +of the classical discrete Fourier transform. +It is defined like so, where $\ket{x}$ +is an $n$-qubit computational basis state $\ket{x_1} \cdots \ket{x_n}$, +and $\omega_N$ is an $N$th complex root of unity $\omega_N^N = 1$ with $N = 2^n$: + +$$\begin{aligned} + \boxed{ + \ket{x} + \:\to\: + \frac{1}{\sqrt{N}} \sum_{k = 0}^{N - 1} \omega_N^{xk} \ket{k} + } +\end{aligned}$$ + +Note that $\ket{x}$ and $\ket{k}$ refer to the same basis set; +we use these names to clarify which "space" we are considering. +Furthermore, note the sign of the exponent of $\omega_N$, +which is the opposite of the classical DFT convention. +In other words, the *forward* QFT corresponds to the *inverse* DFT. + +The **inverse quantum Fourier transform (iQFT)** has a different sign in the exponent: + +$$\begin{aligned} + \boxed{ + \ket{k} + \:\to\: + \frac{1}{\sqrt{N}} \sum_{x = 0}^{N - 1} \omega_N^{-xk} \ket{x} + } +\end{aligned}$$ + +The above definitions of the QFT and iQFT describe +the effect on a single basis vector $\ket{x}$, +so the effect on an abitrary superposition follows from linearity, +e.g. for the QFT: + +$$\begin{aligned} + \sum_{x = 0}^{N - 1} c_x \ket{x} + \:\to\: + \sum_{x = 0}^{N - 1} c_x \bigg( \frac{1}{\sqrt{N}} \sum_{k = 0}^{N - 1} \omega_N^{xk} \ket{k} \bigg) +\end{aligned}$$ + +Classically, such a double sum takes +$\mathcal{O}(N^2) = \mathcal{O}(2^{2n})$ time to evaluate naively, +with a potential improvement to $\mathcal{O}(N \log{N}) = \mathcal{O}(n 2^n)$ +for smarter algorithms. +Quantum computers can do a QFT in $\mathcal{O}(\log^2(N)) = \mathcal{O}(n^2)$ time, +and approximate it in $\mathcal{O}(n \log{n})$ time. + +To find out how, we look at the forward QFT, +which maps a basis state $\ket{x}$ to another state $\ket{\tilde{x}}$: + +$$\begin{aligned} + \ket{x} + \:\to\: + \ket{\tilde{x}} + = \frac{1}{\sqrt{N}} \sum_{k = 0}^{N - 1} \omega_N^{xk} \ket{k} + = \frac{1}{\sqrt{N}} \sum_{k = 0}^{N - 1} \exp\!\bigg( \frac{i 2 \pi x k}{N} \bigg) \ket{k} +\end{aligned}$$ + +We can decompose $k$ into its binary representation +$k_1 2^{n-1} + k_2 2^{n-2} + ... + k_n 2^{0}$: + +$$\begin{aligned} + \ket{\tilde{x}} + &= \frac{1}{\sqrt{2^n}} \sum_{k = 0}^{2^n - 1} \exp\!\bigg( \frac{i 2 \pi x}{2^n} \sum_{j = 1}^{n} k_j 2^{n-j} \bigg) \ket{k} + \\ + &= \frac{1}{\sqrt{2^n}} \sum_{k = 0}^{2^n - 1} \exp\!\bigg( i 2 \pi x \sum_{j = 1}^{n} \frac{k_j}{2^j} \bigg) \ket{k} +\end{aligned}$$ + +Expanding the exponential-of-a-sum into a product-of-exponentials then yields: + +$$\begin{aligned} + \ket{\tilde{x}} + &= \frac{1}{\sqrt{2^n}} \sum_{k = 0}^{2^n - 1} \prod_{j = 1}^{n} \exp\!\bigg( i 2 \pi x \frac{k_j}{2^j} \bigg) \ket{k} +\end{aligned}$$ + +If $k_j = 0$, the exponential is zero. +We can thus separate this state into its individual qubits: + +$$\begin{aligned} + \ket{\tilde{x}} + &= \bigotimes_{j = 1}^{n} \frac{1}{\sqrt{2}} \bigg( \ket{0} + \exp\!\Big( \frac{i 2 \pi x}{2^j} \Big) \ket{1} \bigg) +\end{aligned}$$ + +Next, we use the trick from before: +decompose $x$ as $x_1 2^{n-1} + x_2 2^{n-2} + ... + x_n 2^{0}$: + +$$\begin{aligned} + \ket{\tilde{x}} +% &= \bigotimes_{j = 1}^{n} \frac{1}{\sqrt{2}} \bigg( \ket{0} + \exp\!\Big( \frac{i 2 \pi}{2^j} \sum_{r = 1}^{n} x_r 2^{r-1} \Big) \ket{1} \bigg) +% \\ + &= \bigotimes_{j = 1}^{n} \frac{1}{\sqrt{2}} \bigg( \ket{0} + \exp\!\Big( i 2 \pi \sum_{r = 1}^{n} x_r 2^{n-r-j} \Big) \ket{1} \bigg) +\end{aligned}$$ + +The factor $2^{n-r-j}$ may be smaller or bigger than $1$, +so it is convenient for us to use the following notation +for non-integer binary numbers. +Note the decimal point in the middle: + +$$\begin{aligned} + \left[ a_1 \cdots a_{d} \:.\: a_{d+1} \cdots a_{n} \right] + = \sum_{r = 1}^{n} a_r 2^{d - r} +\end{aligned}$$ + +In the above QFT state, the position of the decimal point is $d = n - j$, +so we write it as: + +$$\begin{aligned} + \ket{\tilde{x}} + &= \bigotimes_{j = 1}^{n} \frac{1}{\sqrt{2}} \bigg( \ket{0} + + \exp\!\Big( i 2 \pi \big[ x_1 \cdots x_{n-j} \:.\: x_{n-j+1} \cdots x_n \big] \Big) \ket{1} \bigg) +\end{aligned}$$ + +Because $\exp(i 2 \pi m) = 1$ for all integers $m$, +we can discard bits before the decimal point: + +$$\begin{aligned} + \ket{\tilde{x}} + &= \frac{1}{\sqrt{2^n}} \bigotimes_{j = 1}^{n} \bigg( \ket{0} + \exp\!\Big( i 2 \pi \big[ 0\:.\: x_{n-j+1} \cdots x_n \big] \Big) \ket{1} \bigg) + \\ + &= \frac{1}{\sqrt{2^n}} \bigg( \ket{0} + \exp\!\Big( i 2 \pi \big[ 0. x_n \big] \Big) \ket{1} \bigg) + \otimes \bigg( \ket{0} + \exp\!\Big( i 2 \pi \big[ 0. x_{n-1} x_n \big] \Big) \ket{1} \bigg) + \otimes \cdots +\end{aligned}$$ + +Furthermore, each exponential can be factorized, +with every factor containing one bit of $x$: + +$$\begin{aligned} + \exp\!\Big( i 2 \pi \big[ 0\:.\: x_{n-j+1} \cdots x_n \big] \Big) + = \exp\!\Big( i 2 \pi \frac{x_{n-j+1}}{2} \Big) \cdots \exp\!\Big( i 2 \pi \frac{x_{n}}{2^{j}} \Big) +\end{aligned}$$ + +This suggests a way to implement the QFT using +[quantum gates](/know/concept/quantum-gate/) in a circuit. +If the $j$th qubit is in $\ket{+} = (\ket{0} + \ket{1})/\sqrt{2}$, +then for each bit $x_{n-j+r}$ where $r \in \{1, ..., j\}$: + ++ If $x_{n-j+r} = 0$, do nothing. ++ If $x_{n-j+r} = 1$, add a relative phase $2 \pi / 2^{r}$. + +The full QFT algorithm therefore proceeds as follows, +for the $(n\!-\!j\!+\!1)$'th input $\ket{x_{n-j+1}}$: + +1. Apply the Hadamard gate $H$. + If $x_{n-j+1} = 0$, this puts the qubit in $\ket{+}$. + If $x_{n-j+1} = 1$, this puts the qubit in $\ket{+}$, + and then adds a phase $\pi$, yielding $\ket{-}$. +2. Apply the phase shift gate $R_{\phi}$ controlled by $x_{n-j+2}$, + with angle $\phi = 2 \pi / 2^{2}$. +3. Apply $R_{\phi}$ controlled by $x_{n-j+3}$, + with angle $\phi = 2 \pi / 2^{3}$... +4. And so on, until the $n$th bit $x_n$ is reached, + and used to control $R_\phi$ with $\phi = 2 \pi / 2^{j}$. + +And so on, for each $j \in \{1, ..., n\}$, +and we reach the above expression for $\ket{\tilde{x}}$. +We started from the $(n\!-\!j\!+\!1)$'th input qubit, +i.e. we read the input in reverse order. +Therefore all the qubits need to be swapped back to front, +either before or after the above algorithm is run. + +The quantum circuit to execute the mentioned steps is illustrated below, +excluding the swapping part to get the right order. +Here, $R_m$ means $R_\phi$ with $\phi = 2 \pi / 2^m$: + + + + + +Again, note how the inputs $\ket{x_j}$ and outputs $\ket{k_j}$ are in the opposite order. +The complete circuit, including the swapping at the end, +therefore looks like this: + + + + + +For each of the $n$ qubits, $\mathcal{O}(n)$ gates are applied, +so overall the QFT algorithm is $\mathcal{O}(n^2)$. + + + +## References +1. J.S. Neergaard-Nielsen, + *Quantum information: lectures notes*, + 2021, unpublished. +2. S. Aaronson, + *Introduction to quantum information science: lecture notes*, + 2018, unpublished. + diff --git a/content/know/concept/quantum-fourier-transform/qft-circuit-noswap.png b/content/know/concept/quantum-fourier-transform/qft-circuit-noswap.png new file mode 100644 index 0000000..651e1a4 Binary files /dev/null and b/content/know/concept/quantum-fourier-transform/qft-circuit-noswap.png differ diff --git a/content/know/concept/quantum-fourier-transform/qft-circuit-swap.png b/content/know/concept/quantum-fourier-transform/qft-circuit-swap.png new file mode 100644 index 0000000..8ca7cfe Binary files /dev/null and b/content/know/concept/quantum-fourier-transform/qft-circuit-swap.png differ -- cgit v1.2.3