From 03accd13c0a6ec4de2d8001edf3ce7553f831160 Mon Sep 17 00:00:00 2001
From: Prefetch
Date: Tue, 27 Sep 2022 21:20:05 +0200
Subject: Clean up CSS, minor design changes
---
content/know/concept/repetition-code/index.pdc | 10 +++++-----
1 file changed, 5 insertions(+), 5 deletions(-)
(limited to 'content/know/concept/repetition-code/index.pdc')
diff --git a/content/know/concept/repetition-code/index.pdc b/content/know/concept/repetition-code/index.pdc
index 7245cbc..d9eec2c 100644
--- a/content/know/concept/repetition-code/index.pdc
+++ b/content/know/concept/repetition-code/index.pdc
@@ -82,7 +82,7 @@ Such a transformation is easy to achieve with the following sequence
of [quantum gates](/know/concept/quantum-gate/):
-
+
So, a little while after encoding the state $\ket{\psi}$ like that,
@@ -208,7 +208,7 @@ by applying $\mathrm{CNOT}$s to some ancillary qubits
and then measuring those:
-
+
The two measurements, respectively representing $ZZI$ and $IZZ$,
@@ -260,7 +260,7 @@ $$\begin{aligned}
\end{aligned}$$
-
+
A phase flip along the $Z$-axis
@@ -269,7 +269,7 @@ In this case, the stabilizers are $XXI$ and $IXX$,
and the error detection circuit is as follows:
-
+
This system protects us against all single-qubit phase flips,
@@ -313,7 +313,7 @@ which simply consists of the phase flip encoder,
followed by 3 copies of the bit flip encoder:
-
+
We thus use 9 physical qubits to store 1 logical qubit.
--
cgit v1.2.3