From 6505b1fb3399ec4bff97aabda2554764bf305d0f Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 21 Nov 2021 18:02:35 +0100 Subject: Expand knowledge base --- content/know/concept/self-energy/index.pdc | 311 +++++++++++++++++++++++++++++ 1 file changed, 311 insertions(+) create mode 100644 content/know/concept/self-energy/index.pdc (limited to 'content/know/concept/self-energy/index.pdc') diff --git a/content/know/concept/self-energy/index.pdc b/content/know/concept/self-energy/index.pdc new file mode 100644 index 0000000..d2908eb --- /dev/null +++ b/content/know/concept/self-energy/index.pdc @@ -0,0 +1,311 @@ +--- +title: "Self-energy" +firstLetter: "S" +publishDate: 2021-11-21 +categories: +- Physics +- Quantum mechanics + +date: 2021-11-15T21:02:02+01:00 +draft: false +markup: pandoc +--- + +# Self-energy + +Suppose we have a time-independent Hamiltonian $\hat{H} = \hat{H}_0 + \hat{W}$, +consisting of a simple $\hat{H}_0$ and a difficult interaction $\hat{W}$, +for example describing Coulomb repulsion between electrons. + +The concept of [imaginary time](/know/concept/imaginary-time/) +exists to handle such difficult time-independent Hamiltonians +at nonzero temperatures. Therefore, we know that the +[Matsubara Green's function](/know/concept/matsubara-greens-function/) +$G$ can be written as follows, where $\mathcal{T}$ is the +[time-ordered product](/know/concept/time-ordered-product/), +and $\beta = 1 / (k_B T)$: + +$$\begin{aligned} + G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a) + = - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_{s_b}(\vb{r}_b, \tau_b) \hat{\Psi}_{s_a}^\dagger(\vb{r}_a, \tau_a) \Big\}}} + {\hbar \expval{\hat{K}(\hbar \beta, 0)}} +\end{aligned}$$ + +Where we know that the time evolution operator $\hat{K}$ +is as follows in the [interaction picture](/know/concept/interaction-picture/): + +$$\begin{aligned} + \hat{K}(\tau_2, \tau_1) + &= \mathcal{T}\bigg\{ \exp\!\bigg( \!-\!\frac{1}{\hbar} \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg) \bigg\} + \\ + &= \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n + \mathcal{T}\bigg\{ \bigg( \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg)^n \bigg\} +\end{aligned}$$ + +Where $\hat{W}$ is the two-body operator in the interaction picture. +We insert this into the full Green's function above, +and abbreviate +$G_{ba} \equiv G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a)$ +and $\hat{\Psi}_a \equiv \hat{\Psi}_{s_a}(\vb{r}_a, \tau_a)$: + +$$\begin{aligned} + G_{ba} + %&= - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}}}{\expval{\hat{K}(\hbar \beta, 0)}} + %\\ + &= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta} + \expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}} + {\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta} + \expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}} +\end{aligned}$$ + +Next, we write out the interaction operator $\hat{W}$ +in the [second quantization](/know/concept/second-quantization/), +assuming there is no spin-flipping, +and that $W(\vb{r}_1, \vb{r}_2) = W(\vb{r}_2, \vb{r}_1)$ +(hence $1/2$ to avoid double-counting): + +$$\begin{aligned} + \hat{W}(\tau_1) + &= \frac{1}{2} \sum_{s_1 s_2} \iint_{-\infty}^\infty \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_1) + W(\vb{r}_1, \vb{r}_2) \hat{\Psi}_{s_2}(\vb{r}_2, \tau_1) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\vb{r}_1} \dd{\vb{r}_2} +\end{aligned}$$ + +We integrate this over $\tau_1$ and over a dummy $\tau_2$. +Defining $W_{j'j} \equiv W(\vb{r}_j', \vb{r}_j) \: \delta(\tau_1 \!-\! \tau_2)$ we get: + +$$\begin{aligned} + \int_0^{\hbar \beta} \hat{W}(\tau_1) \dd{\tau_1} + &= \frac{1}{2} \iint \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_2) + \: W_{1,2} \: \hat{\Psi}_{s_2}(\vb{r}_2, \tau_2) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\tau_2} \dd{\vb{r}_1} \dd{\vb{r}_2} + \\ + &= \frac{1}{2} \iint \hat{\Psi}_1^\dagger \hat{\Psi}_2^\dagger W_{1,2} \hat{\Psi}_2 \hat{\Psi}_1 \dd{1} \dd{2} +\end{aligned}$$ + +Where we have further abbreviated $\int \dd{j} \equiv \sum_{s_j} \int \dd{\vb{r}_j} \int \dd{\tau_j}$. +The full $G_{ba}$ thus becomes: + +$$\begin{aligned} + G_{ba} + &= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n+1} + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{num} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} + {\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n} + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{den} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} +\end{aligned}$$ + +Where we have realized that both the numerator and denominator +contain many-particle non-interacting Green's functions, defined as: + +$$\begin{aligned} + G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n) + &= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n + 1} + \expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots + \hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} + \\ + G^0_\mathrm{den}(1'1 \cdots n'n; 1'1 \cdots n'n) + &= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n} + \expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots + \hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \Big\}} +\end{aligned}$$ + +By applying [Wick's theorem](/know/concept/wicks-theorem/), +we can rewrite these as a sum of products of single-particle Green's functions, +so for instance $G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n)$ becomes: + +$$\begin{aligned} + G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n) + = \mathrm{det} \begin{bmatrix} + G^0_{ba} & G^0_{b1'} & G^0_{b1} & G^0_{b2'} & \cdots & G^0_{bn'} & G^0_{bn} \\ + G^0_{1'a} & G^0_{1'1'} & G^0_{1'1} & G^0_{1'2'} & \cdots & G^0_{1'n'} & G^0_{1'n} \\ + \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ + G^0_{n'a} & G^0_{n'1'} & G^0_{n'1} & G^0_{n'2'} & \cdots & G^0_{n'n'} & G^0_{n'n} \\ + G^0_{na} & G^0_{n1'} & G^0_{n1} & G^0_{n2'} & \cdots & G^0_{nn'} & G^0_{nn} + \end{bmatrix} +\end{aligned}$$ + +And analogously for $G^0_\mathrm{den}$. +If we are studying bosons instead of fermions, +the above determinant would need to be replaced by a *permanent*. +We assume fermions from now on. + +We thus have sums over all permutations $p$ +of products of single-particle Green's function, +times $(-1)^p$ to account for swaps of fermionic operators: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n + 1} G^0_{(p,m)} \Big) \dd{1}' \dd{1} \cdots \dd{n'} \dd{n}} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n} G^0_{(p,m)} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} +\end{aligned}$$ + +These integrals over products of interactions and Green's functions +are the perfect place to apply [Feynman diagrams](/know/concept/feynman-diagram/). +Conveniently, it even turns out that the factor $(-1)^p$ +is exactly equivalent to the rule that each diagram is multiplied by $(-1)^F$, +with $F$ the number of fermion loops. + +The denominator thus turns into a sum of all possible diagrams for each total order $n$ +(the order of a diagram is the number of interaction lines it contains). +The endpoints $a$ and $b$ do not appear here, +so we conclude that all those diagrams only have internal vertices; +we will therefore refer to them as **internal diagrams**. + +And in the numerator, we sum over all diagrams of total order $n$ +containing the external vertices $a$ and $b$. +Some of them are **connected**, +so all vertices (including $a$ and $b$) are in the same graph, +but most are **disconnected**. +Because disconnected diagrams have no shared lines or vertices to integrate over, +they can simply be factored into separate diagrams. + +If it contains $a$ and $b$, we call it an **external diagram**, +and then clearly all disconnected parts must be internal diagrams +($a$ and $b$ are always connected, +since they are the only vertices with just one fermion line; +all internal vertices must have two). +We thus find: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \bigg[ \sum_\mathrm{all\;ext}^{n} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m \!\le\! n} + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} +\end{aligned}$$ + +Where the total order refers to the sum of the orders of all disconnected diagrams. +Note that the external diagram does not directly depend on $n$. +We can therefore reorganize: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_\mathrm{all\;ext}^{\infty} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} + \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} +\end{aligned}$$ + +Since both $n$ and $m$ start at zero, +and the sums include all possible diagrams, +we see that the second sum in the numerator does not actually depend on $m$: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} + \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} + \\ + &= \sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} +\end{aligned}$$ + +In other words, all the disconnected diagrams simply cancel out, +and we are left with a sum over all possible fully connected diagrams +that contain $a$ and $b$. Let $G(b,a) = G_{ba}$: + + + + + +A **reducible diagram** is a Feynman diagram +that can be cut in two valid diagrams +by removing just one fermion line, +while an **irreducible diagram** cannot be split like that. + +At last, we define the **self-energy** $\Sigma(y,x)$ +as the sum of all irreducible terms in $G(b,a)$, +after removing the two external lines from/to $a$ and $b$: + + + + + +Despite its appearance, the self-energy has the semantics of a line, +so it has two endpoints over which to integrate if necessary. + +By construction, by reattaching $G^0(x,a)$ and $G^0(b,y)$ to the self-energy, +we get all irreducible diagrams, +and by connecting multiple irreducible diagrams with single fermion lines, +we get all fully connected diagrams containing the endpoints $a$ and $b$. + +In other words, the full $G(b,a)$ is constructed +by taking the unperturbed $G^0(b,a)$ +and inserting one or more irreducible diagrams between $a$ and $b$. +We can equally well insert a single irreducible diagram +as a sequence of connected irreducible diagrams. +Thanks to this recursive structure, +you can convince youself that $G(b,a)$ obeys +a [Dyson equation](/know/concept/dyson-equation/) involving $\Sigma(y, x)$: + + + + + +This makes sense: in the "normal" Dyson equation +we have a one-body perturbation instead of $\Sigma$, +while $\Sigma$ represents a two-body effect +as an infinite sum of one-body diagrams. +Interpreting this diagrammatic Dyson equation yields: + +$$\begin{aligned} + \boxed{ + G(b, a) + = G^0(b, a) + \iint G^0(b, y) \: \Sigma(y, x) \: G(x, a) \dd{x} \dd{y} + } +\end{aligned}$$ + +Keep in mind that $\int \dd{x} \equiv \sum_{s_x} \int \dd{\vb{r}_x} \int \dd{\tau_x}$. +In the special case of a system with continuous translational symmetry +and no spin dependence, this simplifies to: + +$$\begin{aligned} + \boxed{ + G_{s}(\tilde{\vb{k}}) + = G_{s}^0(\tilde{\vb{k}}) + G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}}) \: G_{s}(\tilde{\vb{k}}) + } +\end{aligned}$$ + +Where $\tilde{\vb{k}} \equiv (\vb{k}, i \omega_n)$, +with $\omega_n$ being a fermionic Matsubara frequency. +Note that conservation of spin, $\vb{k}$ and $\omega_n$, +together with the linear structure of the Dyson equation, +makes $\Sigma$ diagonal in all of those quantities. +Isolating for $G$: + +$$\begin{aligned} + G_{s}(\tilde{\vb{k}}) + = \frac{G_{s}^0(\tilde{\vb{k}})}{1 - G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}})} + = \frac{1}{1 / G_{s}^0(\tilde{\vb{k}}) - \Sigma_{s}(\tilde{\vb{k}})} +\end{aligned}$$ + +From [equation-of-motion theory](/know/concept/equation-of-motion-theory/), +we already know an expression for $G$ in diagonal $\vb{k}$-space: + +$$\begin{aligned} + G_s^0(\vb{k}, i \omega_n) + = \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k}} + \quad \implies \quad + G_{s}(\vb{k}, i \omega_n) + = \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k} - \Sigma_{s}(\vb{k}, i \omega_n)} +\end{aligned}$$ + +The self-energy thus corrects the non-interacting energies for interactions. +It can therefore be regarded as the energy +a particle has due to changes it has caused in its environment. + +Unfortunately, in practice, $\Sigma$ is rarely as simple as +in the translationally-invariant example above; +in fact, it does not even need to be Hermitian, +i.e. $\Sigma(y,x) \neq \Sigma^*(x,y)$, +in which case it resists the standard techniques for analysis. + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. -- cgit v1.2.3