From e12c7ce372ecaa042d85d9fb76371a75ff518d1a Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 28 Jul 2021 14:27:37 +0200 Subject: Expand knowledge base, fix a:visited CSS --- content/know/concept/spherical-coordinates/index.pdc | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) (limited to 'content/know/concept/spherical-coordinates') diff --git a/content/know/concept/spherical-coordinates/index.pdc b/content/know/concept/spherical-coordinates/index.pdc index 4338ab4..4768110 100644 --- a/content/know/concept/spherical-coordinates/index.pdc +++ b/content/know/concept/spherical-coordinates/index.pdc @@ -50,9 +50,6 @@ $$\begin{aligned} } \end{aligned}$$ -The spherical basis vectors $\vu{e}_r$, $\vu{e}_\theta$ and $\vu{e}_\varphi$ -are expressed in the Cartesian basis like so: - The spherical coordinate system is an orthogonal [curvilinear](/know/concept/curvilinear-coordinates/) system, whose scale factors $h_r$, $h_\theta$ and $h_\varphi$ we want to find. @@ -67,7 +64,7 @@ $$\begin{aligned} \end{aligned}$$ And then we calculate the line element $\dd{\ell}^2$, -skipping many terms thanks to orthogonality, +skipping many terms thanks to orthogonality: $$\begin{aligned} \dd{\ell}^2 @@ -94,7 +91,7 @@ $$\begin{aligned} } \end{aligned}$$ -With to these factors, we can easily convert things from the Cartesian system +With these factors, we can easily convert things from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates. The basis vectors are: @@ -164,7 +161,7 @@ $$\begin{aligned} } \end{aligned}$$ -So, for example, an integral over all of space in Cartesian is converted like so: +So, for example, an integral over all of space is converted like so: $$\begin{aligned} \iiint_{-\infty}^\infty f(x, y, z) \dd{V} -- cgit v1.2.3