From 42d409fa774efb8206ae5c701d5cbcc4ae1d9cad Mon Sep 17 00:00:00 2001 From: Prefetch Date: Tue, 14 Sep 2021 21:20:30 +0200 Subject: Expand knowledge base --- .../know/concept/time-ordered-product/index.pdc | 124 +++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 content/know/concept/time-ordered-product/index.pdc (limited to 'content/know/concept/time-ordered-product') diff --git a/content/know/concept/time-ordered-product/index.pdc b/content/know/concept/time-ordered-product/index.pdc new file mode 100644 index 0000000..82c9d0f --- /dev/null +++ b/content/know/concept/time-ordered-product/index.pdc @@ -0,0 +1,124 @@ +--- +title: "Time-ordered product" +firstLetter: "T" +publishDate: 2021-09-13 +categories: +- Physics +- Quantum mechanics + +date: 2021-09-13T19:58:33+02:00 +draft: false +markup: pandoc +--- + +# Time-ordered product + +In quantum mechanics, especially quantum field theory, +a **time-ordered product** is a product of +explicitly time-dependent operators, +subject to certain ordering constraints. + +Let us start with an unusual motivation. +Suppose that some time-dependent operator $\hat{A}(t)$ is defined like so, +as a product of $N$ time-dependent sub-operators $\hat{a}_n(t)$: + +$$\begin{aligned} + \hat{A}(t) + \equiv \int_0^{t} \hat{a}_1(t_1) \bigg( \int_0^{t_1} \hat{a}_2(t_2) \bigg( \int_0^{t_2} \hat{a}_3(t_3) \bigg( \cdots \bigg) + \dd{t_3} \bigg) \dd{t_2} \bigg) \dd{t_1} +\end{aligned}$$ + +Crucially, the upper limits of the inner integrals +depend on the surrounding variables, +meaning that these integrals cannot simply be reordered. + +An interpretation is that the rightmost $\hat{a}_N(t_N)$ is applied first, +and then $\hat{a}_{N-1}(t_{N-1})$ secondly with $t_{N-1} > t_N$, +and so on. +This suggests there is a form of "time-ordering" here: +the integrals sweep across all relative timings of $\hat{a}_n$, +but preserve the ordering. +Indeed, this could be rewritten as a time-ordered product +(see the [interaction picture](/know/concept/interaction-picture/) for an example). + +A more general and intuitive motivation goes as follows. +Suppose we have a product of $N$ time-dependent operators $\hat{a}_n(t)$, +each representing a certain event. +Clearly, we would want to apply them in chronological order: + +$$\begin{aligned} + \hat{a}_N(t_N) \: \hat{a}_{N-1}(t_{N-1}) \: \cdots \: \hat{a}_2(t_2) \: \hat{a}_1(t_1) + \qquad \mathrm{where} \qquad + t_N > t_{N-1} > ... > \: t_2 > t_1 +\end{aligned}$$ + +But what if the ordering of the arguments $t_N, ..., t_1$ +is not known in advance? +We thus define the **time-ordering meta-operator** $\mathcal{T}$, +which reorders the operators based on the $t$-values +such that they are always in chronological order. +For example: + +$$\begin{aligned} + \mathcal{T} \big\{ \hat{a}_1(t_1) \: \hat{a}_2(t_2) \big\} + \equiv + \begin{cases} + \hat{a}_1(t_1) \: \hat{a}_2(t_2) & \mathrm{if} \; t_2 < t_1 \\ + \hat{a}_2(t_2) \: \hat{a}_1(t_1) & \mathrm{if} \; t_1 < t_2 + \end{cases} +\end{aligned}$$ + +This example suggests a general algorithm for $\mathcal{T}$: +we need to consider every permutation of the operators $\hat{a}_n(t_n)$, +and leave only the single one that satisfies our demands. + +Mathematically, we do this by summing up all permutations, +and multiplying each term with a product of +[Heaviside step functions](/know/concept/heaviside-step-function/) $\Theta$, +which remove the term if the ordering is wrong: + +$$\begin{aligned} + \mathcal{T} \big\{ \hat{a}_1 \cdots \hat{a}_N \big\} + \equiv \sum_{p \in P_N}^{} + \Theta\big(t_{p_1} \!\!-\! t_{p_2}\big) \cdots \Theta\big(t_{p_{N-1}} \!\!-\! t_{p_N}\big) + \: \hat{a}_{p_1}(t_{p_1}) \: \cdots \: \hat{a}_{p_N}(t_{p_N}) +\end{aligned}$$ + +With this, our earlier example for two operators $\hat{a}_1$ and $\hat{a}_2$ +takes the following form: + +$$\begin{aligned} + \mathcal{T} \big\{ \hat{a}_1(t_1) \: \hat{a}_2(t_2) \big\} + = \Theta(t_1 - t_2) \: \hat{a}_1(t_1) \: \hat{a}_2(t_2) + \Theta(t_2 - t_1) \: \hat{a}_2(t_2) \: \hat{a}_1(t_1) +\end{aligned}$$ + +However, we are still missing an important detail: +so far, we have quietly been assuming that the operators are bosonic +(see [second quantization](/know/concept/second-quantization/)). +To include fermionic operators, +we must allow the sign of each term to change, +based on whether the permutation is even or odd: + +$$\begin{aligned} + \mathcal{T} \big\{ \hat{a}_1(t_1) \: \hat{a}_2(t_2) \big\} + = \Theta(t_1 - t_2) \: \hat{a}_1(t_1) \: \hat{a}_2(t_2) \pm \Theta(t_2 - t_1) \: \hat{a}_2(t_2) \: \hat{a}_1(t_1) +\end{aligned}$$ + +Where $\pm$ is $+$ for bosons, and $-$ for fermions in this case. +The general definition of $\mathcal{T}$ is: + +$$\begin{aligned} + \boxed{ + \mathcal{T} \big\{ \hat{a}_1 \cdots \hat{a}_N \big\} + \equiv \sum_{p \in P_N}^{} (-1)^p + \bigg( \prod_{j = 1}^{N-1} \Theta\big(t_{p_j} \!-\! t_{p_{j+1}}\big) \bigg) + \bigg( \prod_{k = 1}^N \hat{a}_{p_k}(t_{p_k}) \bigg) + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. -- cgit v1.2.3