From dedb366c3a78f61c64f6be627ea091e71e009f7d Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sat, 2 Oct 2021 15:40:20 +0200 Subject: Expand knowledge base --- .../know/concept/einstein-coefficients/index.pdc | 16 +- content/know/concept/fabry-perot-cavity/index.pdc | 6 + .../know/concept/maxwell-bloch-equations/index.pdc | 427 +++++++++++++++++++++ content/know/concept/rabi-oscillation/index.pdc | 24 +- .../know/concept/rutherford-scattering/index.pdc | 242 ++++++++++++ .../concept/rutherford-scattering/one-body.png | Bin 0 -> 66663 bytes .../concept/rutherford-scattering/two-body.png | Bin 0 -> 40242 bytes 7 files changed, 699 insertions(+), 16 deletions(-) create mode 100644 content/know/concept/maxwell-bloch-equations/index.pdc create mode 100644 content/know/concept/rutherford-scattering/index.pdc create mode 100644 content/know/concept/rutherford-scattering/one-body.png create mode 100644 content/know/concept/rutherford-scattering/two-body.png (limited to 'content/know/concept') diff --git a/content/know/concept/einstein-coefficients/index.pdc b/content/know/concept/einstein-coefficients/index.pdc index 80707c6..9feaf8c 100644 --- a/content/know/concept/einstein-coefficients/index.pdc +++ b/content/know/concept/einstein-coefficients/index.pdc @@ -170,19 +170,21 @@ $$\begin{aligned} = \frac{\big|\!\matrixel{a}{H_1}{b}\!\big|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_{ba} - \omega) t / 2 \big)}{(\omega_{ba} - \omega)^2} \end{aligned}$$ -If the location of the nucleus of the atom has $z = 0$, +If the nucleus is at $z = 0$, then generally $\ket{1}$ and $\ket{2}$ will be even or odd functions of $z$, -such that $\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$, leading to: +meaning that $\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$ +(see also [Laporte's selection rule](/know/concept/selection-rules/)), +leading to: $$\begin{gathered} - \matrixel{1}{H_1}{2} = - E_0 d + \matrixel{1}{H_1}{2} = - E_0 d^* \qquad - \matrixel{2}{H_1}{1} = - E_0 d^* + \matrixel{2}{H_1}{1} = - E_0 d \\ \matrixel{1}{H_1}{1} = \matrixel{2}{H_1}{2} = 0 \end{gathered}$$ -Where $d \equiv q \matrixel{1}{z}{2}$ is a constant, +Where $d \equiv q \matrixel{2}{z}{1}$ is a constant, namely the $z$-component of the **transition dipole moment**. The chance of an upward jump (i.e. absorption) is: @@ -284,12 +286,12 @@ Let us return to the matrix elements of the perturbation $\hat{H}_1$, and define the polarization unit vector $\vec{n}$: $$\begin{aligned} - \matrixel{1}{\hat{H}_1}{2} + \matrixel{2}{\hat{H}_1}{1} = - \vec{d} \cdot \vec{E}_0 = - E_0 (\vec{d} \cdot \vec{n}) \end{aligned}$$ -Where $\vec{d} \equiv q \matrixel{1}{\vec{r}}{2}$ is +Where $\vec{d} \equiv q \matrixel{2}{\vec{r}}{1}$ is the full **transition dipole moment** vector, which is usually complex. The goal is to calculate the average of $|\vec{d} \cdot \vec{n}|^2$. diff --git a/content/know/concept/fabry-perot-cavity/index.pdc b/content/know/concept/fabry-perot-cavity/index.pdc index 2f1f84f..d40852f 100644 --- a/content/know/concept/fabry-perot-cavity/index.pdc +++ b/content/know/concept/fabry-perot-cavity/index.pdc @@ -120,6 +120,12 @@ $$\begin{aligned} &= (1 - r_R) B_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_R) \tilde{k}_m L/2 \big) \end{aligned}$$ +Note that we have not demanded continuity of the electric field. +This is because the mirrors are infinitely thin "magic" planes; +if we had instead used a full physical mirror structure, +then the we would have demanded continuity, +as you might have expected. + ## References diff --git a/content/know/concept/maxwell-bloch-equations/index.pdc b/content/know/concept/maxwell-bloch-equations/index.pdc new file mode 100644 index 0000000..3a0df1b --- /dev/null +++ b/content/know/concept/maxwell-bloch-equations/index.pdc @@ -0,0 +1,427 @@ +--- +title: "Maxwell-Bloch equations" +firstLetter: "M" +publishDate: 2021-10-02 +categories: +- Physics +- Quantum mechanics +- Electromagnetism + +date: 2021-09-09T21:17:52+02:00 +draft: false +markup: pandoc +--- + +# Maxwell-Bloch equations + +For an electron in a two level system with time-independent states +$\ket{g}$ (ground) and $\ket{e}$ (excited), +consider the following general solution +to the full Schrödinger equation: + +$$\begin{aligned} + \ket{\Psi} + &= c_g \: \ket{g} \exp\!(-i E_g t / \hbar) + c_e \: \ket{e} \exp\!(-i E_e t / \hbar) +\end{aligned}$$ + +Perturbing this system with +an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +introduces a time-dependent sinusoidal term $\hat{H}_1$ to the Hamiltonian. +In the [electric dipole approximation](/know/concept/electric-dipole-approximation/), +$\hat{H}_1$ is given by: + +$$\begin{aligned} + \hat{H}_1(t) + = - \hat{\vb{p}} \cdot \vb{E}(t) + \qquad \quad + \hat{\vb{p}} + \equiv q \hat{\vb{x}} + \qquad \quad + \vb{E}(t) + = \vb{E}_0 \cos\!(\omega t) +\end{aligned}$$ + +Where $\vb{E}$ is an [electric field](/know/concept/electric-field/), +and $\hat{\vb{p}}$ is the dipole moment operator. +From [Rabi oscillation](/know/concept/rabi-oscillation/), +we know that the time-varying coefficients $c_g$ and $c_e$ +can then be described by: + +$$\begin{aligned} + \dv{c_g}{t} + &= i \frac{q \matrixel{g}{\hat{\vb{x}}}{e} \cdot \vb{E}_0}{2 \hbar} \exp\!\big( i \omega t \!-\! i \omega_0 t \big) \: c_e + \\ + \dv{c_e}{t} + &= i \frac{q \matrixel{e}{\hat{\vb{x}}}{g} \cdot \vb{E}_0}{2 \hbar} \exp\!\big(\!-\! i \omega t \!+\! i \omega_0 t \big) \: c_g +\end{aligned}$$ + +We want to rearrange these equations a bit. +Therefore, we split the electric field $\vb{E}$ like so, +where the amplitudes $\vb{E}_0^{-}$ and $\vb{E}_0^{+}$ may be slowly varying: + +$$\begin{aligned} + \vb{E}(t) + = \vb{E}^{-}(t) + \vb{E}^{+}(t) + = \vb{E}_0^{-} \exp\!(i \omega t) + \vb{E}_0^{+} \exp\!(-i \omega t) +\end{aligned}$$ + +Since $\vb{E}$ is real, $\vb{E}_0^{+} = (\vb{E}_0^{-})^*$. +Similarly, we define the transition dipole moment $\vb{p}_0^{-}$: + +$$\begin{aligned} + \vb{p}_0^{-} + \equiv q \matrixel{e}{\vb{x}}{g} + \qquad \quad + \vb{p}_0^{+} + \equiv (\vb{p}_0^{-})^* + = q \matrixel{g}{\vb{x}}{e} +\end{aligned}$$ + +With these, the equations for $c_g$ and $c_e$ can be rewritten as shown below. +Note that $\vb{E}^{-}$ and $\vb{E}^{+}$ include the driving plane wave, +and the *rotating wave approximation* is still made: + +$$\begin{aligned} + \dv{c_g}{t} + &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp\!(- i \omega_0 t) \: c_e + \\ + \dv{c_e}{t} + &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp\!(i \omega_0 t) \: c_g +\end{aligned}$$ + + +## Optical Bloch equations + +For $\ket{\Psi}$ as defined above, +the corresponding pure [density operator](/know/concept/density-operator/) +$\hat{\rho}$ is as follows: + +$$\begin{aligned} + \hat{\rho} + = \ket{\Psi} \bra{\Psi} + = + \begin{bmatrix} + c_e c_e^* & c_e c_g^* \exp\!(-i \omega_0 t) \\ + c_g c_e^* \exp\!(i \omega_0 t) & c_g c_g^* + \end{bmatrix} + \equiv + \begin{bmatrix} + \rho_{ee} & \rho_{eg} \\ + \rho_{ge} & \rho_{gg} + \end{bmatrix} +\end{aligned}$$ + +Where $\omega_0 \equiv (E_e \!-\! E_g) / \hbar$ is the resonance frequency. +We take the $t$-derivative of the matrix elements, +and insert the equations for $c_g$ and $c_e$: + +$$\begin{aligned} + \dv{\rho_{gg}}{t} + &= \dv{c_g}{t} c_g^* + c_g \dv{c_g^*}{t} + \\ + &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp\!(- i \omega_0 t) \: c_e c_g^* + - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp\!(i \omega_0 t) \: c_g c_e^* + \\ + \dv{\rho_{ee}}{t} + &= \dv{c_e}{t} c_e^* + c_e \dv{c_e^*}{t} + \\ + &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp\!(i \omega_0 t) \: c_g c_e^* + - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp\!(- i \omega_0 t) \: c_e c_g^* + \\ + \dv{\rho_{ge}}{t} + &= \dv{c_g}{t} c_e^* \exp\!(i \omega_0 t) + c_g \dv{c_e^*}{t} \exp\!(i \omega_0 t) + i \omega_0 c_g c_e^* \exp\!(i \omega_0 t) + \\ + &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \: c_e c_e^* + - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \: c_g c_g^* + + i \omega_0 c_g c_e^* \exp\!(i \omega_0 t) + \\ + \dv{\rho_{eg}}{t} + &= \dv{c_e}{t} c_g^* \exp\!(-i \omega_0 t) + c_e \dv{c_g^*}{t} \exp\!(-i \omega_0 t) - i \omega_0 c_e c_g^* \exp\!(- i \omega_0 t) + \\ + &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \: c_g c_g^* + - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \: c_e c_e^* + - i \omega_0 c_e c_g^* \: \exp\!(- i \omega_0 t) +\end{aligned}$$ + +Recognizing the density matrix elements allows us +to reduce these equations to: + +$$\begin{aligned} + \dv{\rho_{gg}}{t} + &= \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big) + \\ + \dv{\rho_{ee}}{t} + &= \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big) + \\ + \dv{\rho_{ge}}{t} + &= i \omega_0 \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \big( \rho_{ee} - \rho_{gg} \big) + \\ + \dv{\rho_{eg}}{t} + &= - i \omega_0 \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \big( \rho_{gg} - \rho_{ee} \big) +\end{aligned}$$ + +These equations are correct if nothing else is affecting $\hat{\rho}$. +But in practice, these quantities decay due to various processes, +e.g. spontaneous emission (see [Einstein coefficients](/know/concept/einstein-coefficients/)). + +Let $\rho_{ee}$ decays with rate $\gamma_e$. +Since the total probability $\rho_{ee} + \rho_{gg} = 1$, +we thus have: + +$$\begin{aligned} + \Big( \dv{\rho_{ee}}{t} \Big)_{e} + = - \gamma_e \rho_{ee} + \quad \implies \quad + \Big( \dv{\rho_{gg}}{t} \Big)_{e} + = \gamma_e \rho_{ee} +\end{aligned}$$ + +Meanwhile, for whatever reason, +let $\rho_{gg}$ decay into $\rho_{ee}$ with rate $\gamma_g$: + +$$\begin{aligned} + \Big( \dv{\rho_{gg}}{t} \Big)_{g} + = - \gamma_g \rho_{gg} + \quad \implies \quad + \Big( \dv{\rho_{gg}}{t} \Big)_{g} + = \gamma_g \rho_{gg} +\end{aligned}$$ + +And finally, let the diagonal (perpendicular) matrix elements +both decay with rate $\gamma_\perp$: + +$$\begin{aligned} + \Big( \dv{\rho_{eg}}{t} \Big)_{\perp} + = - \gamma_\perp \rho_{eg} + \qquad \quad + \Big( \dv{\rho_{ge}}{t} \Big)_{\perp} + = - \gamma_\perp \rho_{ge} +\end{aligned}$$ + +Putting everything together, +we arrive at the **optical Bloch equations** governing $\hat{\rho}$: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \dv{\rho_{gg}}{t} + &= \gamma_e \rho_{ee} - \gamma_g \rho_{gg} + + \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big) + \\ + \dv{\rho_{ee}}{t} + &= \gamma_g \rho_{gg} - \gamma_e \rho_{ee} + + \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big) + \\ + \dv{\rho_{ge}}{t} + &= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge} + + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big) + \\ + \dv{\rho_{eg}}{t} + &= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg} + + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big) + \end{aligned} + } +\end{aligned}$$ + +Many authors simplify these equations a bit by choosing +$\gamma_g = 0$ and $\gamma_\perp = \gamma_e / 2$. + + +## Including Maxwell's equations + +This two-level system has a dipole moment $\vb{p}$ as follows, +where we use [Laporte's selection rule](/know/concept/selection-rules/) +to remove diagonal terms, by assuming that +the electron's orbitals are odd or even: + +$$\begin{aligned} + \vb{p} + &= \matrixel{\Psi}{\hat{\vb{p}}}{\Psi} + \\ + &= q \Big( c_g c_g^* \matrixel{g}{\hat{\vb{x}}}{g} + c_e c_e^* \matrixel{e}{\hat{\vb{x}}}{e} + + c_g c_e^* \matrixel{e}{\hat{\vb{x}}}{g} \exp\!(i \omega_0 t) + c_e c_g^* \matrixel{g}{\hat{\vb{x}}}{e} \exp\!(-i \omega_0 t) \Big) + \\ + &= q \Big( \rho_{ge} \matrixel{e}{\hat{\vb{x}}}{g} + \rho_{eg} \matrixel{g}{\hat{\vb{x}}}{e} \Big) + = \vb{p}_0^{-} \rho_{ge}(t) + \vb{p}_0^{+} \rho_{eg}(t) + \equiv \vb{p}^{-}(t) + \vb{p}^{+}(t) +\end{aligned}$$ + +Where we have split $\vb{p}$ analogously to $\vb{E}$ +by defining $\vb{p}^{+} \equiv \vb{p}_0^{+} \rho_{eg}$. +Its equation of motion can then be found from the optical Bloch equations: + +$$\begin{aligned} + \dv{\vb{p}^{+}}{t} + = \vb{p}_0^{+} \dv{\rho_{eg}}{t} + = - \vb{p}_0^{+} \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg} + + \frac{i}{\hbar} \vb{p}_0^{+} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \Big( \rho_{gg} - \rho_{ee} \Big) +\end{aligned}$$ + +Some authors do not bother multiplying $\rho_{ge}$ by $\vb{p}_0^{+}$. +In any case, we arrive at: + +$$\begin{aligned} + \boxed{ + \dv{\vb{p}^{+}}{t} + = - \Big( \gamma_\perp + i \omega_0 \Big) \vb{p}^{+} + - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} d + } +\end{aligned}$$ + +Where we have defined the **population inversion** $d \in [-1, 1]$ as follows, +which quantifies the electron's excitedness: + +$$\begin{aligned} + d + \equiv \rho_{ee} - \rho_{gg} +\end{aligned}$$ + +From the optical Bloch equations, +we find its equation of motion to be: + +$$\begin{aligned} + \dv{d}{t} + &= \dv{\rho_{ee}}{t} - \dv{\rho_{gg}}{t} + = 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} + + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big) +\end{aligned}$$ + +We can rewrite the first two terms in the following intuitive form, +which describes a decay with +rate $\gamma_\parallel \equiv \gamma_g + \gamma_e$ +towards an equilbrium $d_0$: + +$$\begin{aligned} + 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} + = \gamma_\parallel (d_0 - d) + \qquad \quad + d_0 + \equiv \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e} +\end{aligned}$$ + +
+
+
+Here, $b$ is called the **impact parameter**.
+Intuitively, we expect $\theta$ to be larger for smaller $b$.
+
+By combining Coulomb's law with Newton's laws,
+these particles' equations of motion are found to be as follows,
+where $r = |\vb{r}_1 - \vb{r}_2|$ is the distance between 1 and 2:
+
+$$\begin{aligned}
+ m_1 \dv{\vb{v}_1}{t}
+ = \vb{F}_1
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}_1 - \vb{r}_2}{r^3}
+ \qquad \quad
+ m_2 \dv{\vb{v}_2}{t}
+ = \vb{F}_2
+ = - \vb{F}_1
+\end{aligned}$$
+
+Using the [reduced mass](/know/concept/reduced-mass/)
+$\mu \equiv m_1 m_2 / (m_1 \!+\! m_2)$,
+we turn this into a one-body problem:
+
+$$\begin{aligned}
+ \mu \dv{\vb{v}}{t}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}}{r^3}
+\end{aligned}$$
+
+Where $\vb{v} \equiv \vb{v}_1 \!-\! \vb{v}_2$ is the relative velocity,
+and $\vb{r} \equiv \vb{r}_1 \!-\! \vb{r}_2$ is the relative position.
+The latter is as follows in
+[cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/)
+$(r, \varphi, z)$:
+
+$$\begin{aligned}
+ \vb{r}
+ = r \cos{\varphi} \:\vu{e}_x + r \sin{\varphi} \:\vu{e}_y + z \:\vu{e}_z
+ = r \:\vu{e}_r + z \:\vu{e}_z
+\end{aligned}$$
+
+These new coordinates are sketched below,
+where the origin represents $\vb{r}_1 = \vb{r}_2$.
+Crucially, note the symmetry:
+if the "collision" occurs at $t = 0$,
+then by comparing $t > 0$ and $t < 0$
+we can see that $v_x$ is unchanged for any given $\pm t$,
+while $v_y$ simply changes sign:
+
+
+
+
+
+From our expression for $\vb{r}$,
+we can find $\vb{v}$ by differentiating with respect to time:
+
+$$\begin{aligned}
+ \vb{v}
+ &= \big( r' \cos{\varphi} - r \varphi' \sin{\varphi} \big) \:\vu{e}_x
+ + \big( r' \sin{\varphi} + r \varphi' \cos{\varphi} \big) \:\vu{e}_y + z' \:\vu{e}_z
+ \\
+ &= r' \: \big( \cos{\varphi} \:\vu{e}_x + \sin{\varphi} \:\vu{e}_y \big)
+ + r \varphi' \: \big( \!-\! \sin{\varphi} \:\vu{e}_x + \cos{\varphi} \:\vu{e}_y \big) + z' \:\vu{e}_z
+ \\
+ &= r' \:\vu{e}_r + r \varphi' \:\vu{e}_\varphi + z' \:\vu{e}_z
+\end{aligned}$$
+
+Where we have recognized the basis vectors $\vu{e}_r$ and $\vu{e}_\varphi$.
+If we choose the coordinate system such that all dynamics are in the $(x,y)$-plane,
+i.e. $z(t) = 0$, we have:
+
+$$\begin{aligned}
+ \vb{r}
+ = r \: \vu{e}_r
+ \qquad \qquad
+ \vb{v}
+ = r' \:\vu{e}_r + r \varphi' \:\vu{e}_\varphi
+\end{aligned}$$
+
+Consequently, the angular momentum $\vb{L}$ is as follows,
+pointing purely in the $z$-direction:
+
+$$\begin{aligned}
+ \vb{L}(t)
+ = \mu \vb{r} \cross \vb{v}
+ = \mu \big( r \vu{e}_r \cross r \varphi' \vu{e}_\varphi \big)
+ = \mu r^2 \varphi' \:\vu{e}_z
+\end{aligned}$$
+
+Now, from the figure above,
+we can argue geometrically that at infinity $t = \pm \infty$,
+the ratio $b/r$ is related to the angle $\chi$ between $\vb{v}$ and $\vb{r}$ like so:
+
+$$\begin{aligned}
+ \frac{b}{r(\pm \infty)}
+ = \sin{\chi(\pm \infty)}
+ \qquad \quad
+ \chi(t)
+ \equiv \measuredangle(\vb{r}, \vb{v})
+\end{aligned}$$
+
+With this, we can rewrite
+the magnitude of the angular momentum $\vb{L}$ as follows,
+where the total velocity $|\vb{v}|$ is a constant,
+thanks to conservation of energy:
+
+$$\begin{aligned}
+ \big| \vb{L}(\pm \infty) \big|
+ = \mu \big| \vb{r} \cross \vb{v} \big|
+ = \mu r |\vb{v}| \sin{\chi}
+ = \mu b |\vb{v}|
+\end{aligned}$$
+
+However, conveniently,
+angular momentum is also conserved, i.e. $\vb{L}$ is constant in time:
+
+$$\begin{aligned}
+ \vb{L}'(t)
+ &= \mu \big( \vb{r} \cross \vb{v}' + \vb{v} \cross \vb{v} \big)
+ = \vb{r} \cross (\mu \vb{v}')
+ = \vb{r} \cross \Big( \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}}{r^3} \Big)
+ = 0
+\end{aligned}$$
+
+Where we have replaced $\mu \vb{v}'$ with the equation of motion.
+Thanks to this, we can equate the two preceding expressions for $\vb{L}$,
+leading to the relation below.
+Note the appearance of a new minus,
+because the sketch shows that $\varphi' < 0$,
+i.e. $\varphi$ decreases with increasing $t$:
+
+$$\begin{aligned}
+ - \mu r^2 \dv{\varphi}{t}
+ = \mu b |\vb{v}|
+ \quad \implies \quad
+ \dd{t}
+ = - \frac{r^2}{b |\vb{v}|} \dd{\varphi}
+\end{aligned}$$
+
+Now, at last, we turn to the main equation of motion.
+Its $y$-component is given by:
+
+$$\begin{aligned}
+ \mu \dv{v_y}{t}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{y}{r^3}
+ \quad \implies \quad
+ \mu \dd{v_y}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{y}{r^3} \dd{t}
+\end{aligned}$$
+
+We replace $\dd{t}$ with our earlier relation,
+and recognize geometrically that $y/r = \sin{\varphi}$:
+
+$$\begin{aligned}
+ \mu \dd{v_y}
+ = - \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \frac{y}{r} \dd{\varphi}
+ = - \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \sin{\varphi} \dd{\varphi}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \dd{(\cos{\varphi})}
+\end{aligned}$$
+
+Integrating this from the initial state $i$ at $t = -\infty$
+to the final state $f$ at $t = \infty$ yields:
+
+$$\begin{aligned}
+ \Delta v_y
+ \equiv \int_{i}^{f} \dd{v_y}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( \cos{\varphi_f} - \cos{\varphi_i} \big)
+\end{aligned}$$
+
+From symmetry, we see that $\varphi_i = \pi \!-\! \varphi_f$,
+and that $\Delta v_y = v_{y,f} \!-\! v_{y,i} = 2 v_{y,f}$, such that:
+
+$$\begin{aligned}
+ 2 v_{y,f}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( \cos{\varphi_f} - \cos\!(\pi \!-\! \varphi_f) \big)
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( 2 \cos{\varphi_f} \big)
+\end{aligned}$$
+
+Furthermore, geometrically, at $t = \infty$
+we notice that $v_{y,f} = |\vb{v}| \sin{\varphi_f}$,
+leading to:
+
+$$\begin{aligned}
+ 2 |\vb{v}| \sin{\varphi_f}
+ = \frac{q_1 q_2}{2 \pi \varepsilon_0 b |\vb{v}| \mu} \cos{\varphi_f}
+\end{aligned}$$
+
+Rearranging this yields the following equation
+for the final polar angle $\varphi_f \equiv \varphi(\infty)$:
+
+$$\begin{aligned}
+ \tan{\varphi_f}
+ = \frac{\sin{\varphi_f}}{\cos{\varphi_f}}
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|^2 \mu}
+\end{aligned}$$
+
+However, we want $\theta$, not $\varphi_f$.
+One last use of symmetry and geometry
+tells us that $\theta = 2 \varphi_f$,
+and we thus arrive at the celebrated **Rutherford scattering formula**:
+
+$$\begin{aligned}
+ \boxed{
+ \tan\!\Big( \frac{\theta}{2} \Big)
+ = \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|^2 \mu}
+ }
+\end{aligned}$$
+
+
+
+## References
+1. P.M. Bellan,
+ *Fundamentals of plasma physics*,
+ 1st edition, Cambridge.
+2. M. Salewski, A.H. Nielsen,
+ *Plasma physics: lecture notes*,
+ 2021, unpublished.
diff --git a/content/know/concept/rutherford-scattering/one-body.png b/content/know/concept/rutherford-scattering/one-body.png
new file mode 100644
index 0000000..2f837bb
Binary files /dev/null and b/content/know/concept/rutherford-scattering/one-body.png differ
diff --git a/content/know/concept/rutherford-scattering/two-body.png b/content/know/concept/rutherford-scattering/two-body.png
new file mode 100644
index 0000000..b67b6d1
Binary files /dev/null and b/content/know/concept/rutherford-scattering/two-body.png differ
--
cgit v1.2.3