From e12c7ce372ecaa042d85d9fb76371a75ff518d1a Mon Sep 17 00:00:00 2001 From: Prefetch Date: Wed, 28 Jul 2021 14:27:37 +0200 Subject: Expand knowledge base, fix a:visited CSS --- .../know/concept/curvilinear-coordinates/index.pdc | 4 +- .../cylindrical-parabolic-coordinates/index.pdc | 188 +++++++++++++++++++ .../cylindrical-polar-coordinates/index.pdc | 206 +++++++++++++++++++++ .../parabolic-cylindrical-coordinates/index.pdc | 188 ------------------- .../concept/path-integral-formulation/index.pdc | 8 +- .../concept/rayleigh-plesset-equation/index.pdc | 82 +++++--- .../know/concept/spherical-coordinates/index.pdc | 9 +- 7 files changed, 458 insertions(+), 227 deletions(-) create mode 100644 content/know/concept/cylindrical-parabolic-coordinates/index.pdc create mode 100644 content/know/concept/cylindrical-polar-coordinates/index.pdc delete mode 100644 content/know/concept/parabolic-cylindrical-coordinates/index.pdc (limited to 'content/know') diff --git a/content/know/concept/curvilinear-coordinates/index.pdc b/content/know/concept/curvilinear-coordinates/index.pdc index 925eda3..62efe39 100644 --- a/content/know/concept/curvilinear-coordinates/index.pdc +++ b/content/know/concept/curvilinear-coordinates/index.pdc @@ -45,8 +45,8 @@ because the coordinate system is orthogonal by assumption. Examples of orthogonal curvilinear coordinate systems include [spherical coordinates](/know/concept/spherical-coordinates/), -cylindrical coordinates, -and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coordinates/). +[cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/), +and [cylindrical parabolic coordinates](/know/concept/cylindrical-parabolic-coordinates/). In the following subsections, we derive general formulae to convert expressions diff --git a/content/know/concept/cylindrical-parabolic-coordinates/index.pdc b/content/know/concept/cylindrical-parabolic-coordinates/index.pdc new file mode 100644 index 0000000..3460de4 --- /dev/null +++ b/content/know/concept/cylindrical-parabolic-coordinates/index.pdc @@ -0,0 +1,188 @@ +--- +title: "Cylindrical parabolic coordinates" +firstLetter: "C" +publishDate: 2021-03-04 +categories: +- Mathematics +- Physics + +date: 2021-03-04T15:07:46+01:00 +draft: false +markup: pandoc +--- + +# Cylindrical parabolic coordinates + +**Cylindrical parabolic coordinates** are a coordinate system +that describes a point in space using three coordinates $(\sigma, \tau, z)$. +The $z$-axis is unchanged from the Cartesian system, +hence it is called a *cylindrical* system. +In the $z$-isoplane, however, confocal parabolas are used. +These coordinates can be converted to the Cartesian $(x, y, z)$ as follows: + +$$\begin{aligned} + \boxed{ + x = \frac{1}{2} (\tau^2 - \sigma^2 ) + \qquad + y = \sigma \tau + \qquad + z = z + } +\end{aligned}$$ + +Converting the other way is a bit trickier. +It can be done by solving the following equations, +and potentially involves some fiddling with signs: + +$$\begin{aligned} + 2 x + = \frac{y^2}{\sigma^2} - \sigma^2 + \qquad \quad + 2 x + = - \frac{y^2}{\tau^2} + \tau^2 +\end{aligned}$$ + +Cylindrical parabolic coordinates form an orthogonal +[curvilinear](/know/concept/curvilinear-coordinates/) system, +so we would like to find its scale factors $h_\sigma$, $h_\tau$ and $h_z$. +The differentials of the Cartesian coordinates are as follows: + +$$\begin{aligned} + \dd{x} = - \sigma \dd{\sigma} + \tau \dd{\tau} + \qquad + \dd{y} = \tau \dd{\sigma} + \sigma \dd{\tau} + \qquad + \dd{z} = \dd{z} +\end{aligned}$$ + +We calculate the line segment $\dd{\ell}^2$, +skipping many terms thanks to orthogonality: + +$$\begin{aligned} + \dd{\ell}^2 + &= (\sigma^2 + \tau^2) \:\dd{\sigma}^2 + (\tau^2 + \sigma^2) \:\dd{\tau}^2 + \dd{z}^2 +\end{aligned}$$ + +From this, we can directly read off the scale factors $h_\sigma^2$, $h_\tau^2$ and $h_z^2$, +which turn out to be: + +$$\begin{aligned} + \boxed{ + h_\sigma = \sqrt{\sigma^2 + \tau^2} + \qquad + h_\tau = \sqrt{\sigma^2 + \tau^2} + \qquad + h_z = 1 + } +\end{aligned}$$ + +With these scale factors, we can use +the general formulae for orthogonal curvilinear coordinates +to easily to convert things from the Cartesian system. +The basis vectors are: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \vu{e}_\sigma + &= \frac{- \sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y + \\ + \vu{e}_\tau + &= \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y + \\ + \vu{e}_z + &= \vu{e}_z + \end{aligned} + } +\end{aligned}$$ + +The basic vector operations (gradient, divergence, Laplacian and curl) are given by: + +$$\begin{aligned} + \boxed{ + \nabla f + = \frac{\mathbf{e}_\sigma}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\sigma} + + \frac{\mathbf{e}_\tau}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\tau} + + \mathbf{e}_z \pdv{f}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla \cdot \mathbf{V} + = \frac{1}{\sigma^2 + \tau^2} + \Big( \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{d\sigma} + \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{d\tau} \Big) + \pdv{V_z}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla^2 f + = \frac{1}{\sigma^2 + \tau^2} \Big( \pdv[2]{f}{\sigma} + \pdv[2]{f}{\tau} \Big) + \pdv[2]{f}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \mathbf{V} + &= \mathbf{e}_\sigma \Big( \frac{\mathbf{e}_1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \Big) + \\ + &+ \mathbf{e}_\tau \Big( \pdv{V_\sigma}{z} - \frac{1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\sigma} \Big) + \\ + &+ \frac{\mathbf{e}_z}{\sigma^2 + \tau^2} + \Big( \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{\sigma} - \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{\tau} \Big) + \end{aligned} + } +\end{aligned}$$ + +The differential element of volume $\dd{V}$ +in cylindrical parabolic coordinates is given by: + +$$\begin{aligned} + \boxed{ + \dd{V} = (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} \dd{z} + } +\end{aligned}$$ + +The differential elements of the isosurfaces are as follows, +where $\dd{S_\sigma}$ is the $\sigma$-isosurface, etc.: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \dd{S_\sigma} &= \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} + \\ + \dd{S_\tau} &= \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} + \\ + \dd{S_z} &= (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} + \end{aligned} + } +\end{aligned}$$ + +The normal element $\dd{\vu{S}}$ of a surface and +the tangent element $\dd{\vu{\ell}}$ of a curve are respectively: + +$$\begin{aligned} + \boxed{ + \dd{\vu{S}} + = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} + + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} + + \mathbf{e}_z (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \dd{\vu{\ell}} + = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\sigma} + + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\tau} + + \mathbf{e}_z \dd{z} + } +\end{aligned}$$ + + +## References +1. M.L. Boas, + *Mathematical methods in the physical sciences*, 2nd edition, + Wiley. diff --git a/content/know/concept/cylindrical-polar-coordinates/index.pdc b/content/know/concept/cylindrical-polar-coordinates/index.pdc new file mode 100644 index 0000000..6242b9f --- /dev/null +++ b/content/know/concept/cylindrical-polar-coordinates/index.pdc @@ -0,0 +1,206 @@ +--- +title: "Cylindrical polar coordinates" +firstLetter: "C" +publishDate: 2021-07-26 +categories: +- Mathematics +- Physics + +date: 2021-07-26T16:08:46+02:00 +draft: false +markup: pandoc +--- + +# Cylindrical polar coordinates + +**Cylindrical polar coordinates** are an extension of polar coordinates to 3D, +which describes the location of a point in space +using the coordinates $(r, \varphi, z)$. +The $z$-axis is unchanged from Cartesian coordinates, +hence it is called a *cylindrical* system. + +Cartesian coordinates $(x, y, z)$ +and the cylindrical system $(r, \varphi, z)$ are related by: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + x &= r \cos\varphi \\ + y &= r \sin\varphi \\ + z &= z + \end{aligned} + } +\end{aligned}$$ + +Conversely, a point given in $(x, y, z)$ +can be converted to $(r, \varphi, z)$ +using these formulae: + +$$\begin{aligned} + \boxed{ + r = \sqrt{x^2 + y^2} + \qquad + \varphi = \mathtt{atan2}(y, x) + \qquad + z = z + } +\end{aligned}$$ + +The cylindrical polar coordinates form an orthogonal +[curvilinear](/know/concept/curvilinear-coordinates/) system, +whose scale factors $h_r$, $h_\varphi$ and $h_z$ we want to find. +To do so, we calculate the differentials of the Cartesian coordinates: + +$$\begin{aligned} + \dd{x} = \dd{r} \cos\varphi - \dd{\varphi} r \sin\varphi + \qquad + \dd{y} = \dd{r} \sin\varphi + \dd{\varphi} r \cos\varphi + \qquad + \dd{z} = \dd{z} +\end{aligned}$$ + +And then we calculate the line element $\dd{\ell}^2$, +skipping many terms thanks to orthogonality, + +$$\begin{aligned} + \dd{\ell}^2 + &= \dd{r}^2 \big( \cos^2(\varphi) + \sin^2(\varphi) \big) + + \dd{\varphi}^2 \big( r^2 \sin^2(\varphi) + r^2 \cos^2(\varphi) \big) + + \dd{z}^2 + \\ + &= \dd{r}^2 + r^2 \: \dd{\varphi}^2 + \dd{z}^2 +\end{aligned}$$ + +Finally, we can simply read off +the squares of the desired scale factors +$h_r^2$, $h_\varphi^2$ and $h_z^2$: + +$$\begin{aligned} + \boxed{ + h_r = 1 + \qquad + h_\varphi = r + \qquad + h_z = 1 + } +\end{aligned}$$ + +With these factors, we can easily convert things from the Cartesian system +using the standard formulae for orthogonal curvilinear coordinates. +The basis vectors are: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \vu{e}_r + &= \cos\varphi \:\vu{e}_x + \sin\varphi \:\vu{e}_y + \\ + \vu{e}_\varphi + &= - \sin\varphi \:\vu{e}_x + \cos\varphi \:\vu{e}_y + \\ + \vu{e}_z + &= \vu{e}_z + \end{aligned} + } +\end{aligned}$$ + +The basic vector operations (gradient, divergence, Laplacian and curl) are given by: + +$$\begin{aligned} + \boxed{ + \nabla f + = \vu{e}_r \pdv{f}{r} + + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi} + + \mathbf{e}_z \pdv{f}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla \cdot \vb{V} + = \frac{1}{r} \pdv{(r V_r)}{r} + + \frac{1}{r} \pdv{V_\varphi}{\varphi} + + \pdv{V_z}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla^2 f + = \frac{1}{r} \pdv{r} \Big( r \pdv{f}{r} \Big) + + \frac{1}{r^2} \pdv[2]{f}{\varphi} + + \pdv[2]{f}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \vb{V} + &= \vu{e}_r \Big( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \Big) + \\ + &+ \vu{e}_\varphi \Big( \pdv{V_r}{z} - \pdv{V_z}{r} \Big) + \\ + &+ \frac{\vu{e}_\varphi}{r} \Big( \pdv{(r V_\varphi)}{r} - \pdv{V_r}{\varphi} \Big) + \end{aligned} + } +\end{aligned}$$ + +The differential element of volume $\dd{V}$ +takes the following form: + +$$\begin{aligned} + \boxed{ + \dd{V} + = r \dd{r} \dd{\varphi} \dd{z} + } +\end{aligned}$$ + +So, for example, an integral over all of space is converted like so: + +$$\begin{aligned} + \iiint_{-\infty}^\infty f(x, y, z) \dd{V} + = \int_{-\infty}^{\infty} \int_0^{2\pi} \int_0^\infty f(r, \varphi, z) \: r \dd{r} \dd{\varphi} \dd{z} +\end{aligned}$$ + +The isosurface elements are as follows, where $S_r$ is a surface at constant $r$, etc.: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \dd{S}_r = r \dd{\varphi} \dd{z} + \qquad + \dd{S}_\varphi = \dd{r} \dd{z} + \qquad + \dd{S}_z = r \dd{r} \dd{\varphi} + \end{aligned} + } +\end{aligned}$$ + +Similarly, the normal vector element $\dd{\vu{S}}$ for an arbitrary surface is given by: + +$$\begin{aligned} + \boxed{ + \dd{\vu{S}} + = \vu{e}_r \: r \dd{\varphi} \dd{z} + + \vu{e}_\varphi \dd{r} \dd{z} + + \vu{e}_z \: r \dd{r} \dd{\varphi} + } +\end{aligned}$$ + +And finally, the tangent vector element $\dd{\vu{\ell}}$ of a given curve is as follows: + +$$\begin{aligned} + \boxed{ + \dd{\vu{\ell}} + = \vu{e}_r \dd{r} + + \vu{e}_\varphi \: r \dd{\varphi} + + \vu{e}_z \dd{z} + } +\end{aligned}$$ + + +## References +1. M.L. Boas, + *Mathematical methods in the physical sciences*, 2nd edition, + Wiley. diff --git a/content/know/concept/parabolic-cylindrical-coordinates/index.pdc b/content/know/concept/parabolic-cylindrical-coordinates/index.pdc deleted file mode 100644 index 56544ae..0000000 --- a/content/know/concept/parabolic-cylindrical-coordinates/index.pdc +++ /dev/null @@ -1,188 +0,0 @@ ---- -title: "Parabolic cylindrical coordinates" -firstLetter: "P" -publishDate: 2021-03-04 -categories: -- Mathematics -- Physics - -date: 2021-03-04T15:07:46+01:00 -draft: false -markup: pandoc ---- - -# Parabolic cylindrical coordinates - -**Parabolic cylindrical coordinates** are a coordinate system -that describes a point in space using three coordinates $(\sigma, \tau, z)$. -The $z$-axis is unchanged from the Cartesian system, -hence it is called a *cylindrical* system. -In the $z$-isoplane, however, confocal parabolas are used. -These coordinates can be converted to the Cartesian $(x, y, z)$ as follows: - -$$\begin{aligned} - \boxed{ - x = \frac{1}{2} (\tau^2 - \sigma^2 ) - \qquad - y = \sigma \tau - \qquad - z = z - } -\end{aligned}$$ - -Converting the other way is a bit trickier. -It can be done by solving the following equations, -and potentially involves some fiddling with signs: - -$$\begin{aligned} - 2 x - = \frac{y^2}{\sigma^2} - \sigma^2 - \qquad \quad - 2 x - = - \frac{y^2}{\tau^2} + \tau^2 -\end{aligned}$$ - -Parabolic cylindrical coordinates form an orthogonal -[curvilinear](/know/concept/curvilinear-coordinates/) system, -so we would like to find its scale factors $h_\sigma$, $h_\tau$ and $h_z$. -The differentials of the Cartesian coordinates are as follows: - -$$\begin{aligned} - \dd{x} = - \sigma \dd{\sigma} + \tau \dd{\tau} - \qquad - \dd{y} = \tau \dd{\sigma} + \sigma \dd{\tau} - \qquad - \dd{z} = \dd{z} -\end{aligned}$$ - -We calculate the line segment $\dd{\ell}^2$, -skipping many terms thanks to orthogonality: - -$$\begin{aligned} - \dd{\ell}^2 - &= (\sigma^2 + \tau^2) \:\dd{\sigma}^2 + (\tau^2 + \sigma^2) \:\dd{\tau}^2 + \dd{z}^2 -\end{aligned}$$ - -From this, we can directly read off the scale factors $h_\sigma^2$, $h_\tau^2$ and $h_z^2$, -which turn out to be: - -$$\begin{aligned} - \boxed{ - h_\sigma = \sqrt{\sigma^2 + \tau^2} - \qquad - h_\tau = \sqrt{\sigma^2 + \tau^2} - \qquad - h_z = 1 - } -\end{aligned}$$ - -With these scale factors, we can use -the general formulae for orthogonal curvilinear coordinates -to easily to convert things from the Cartesian system. -The basis vectors are: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \vu{e}_\sigma - &= \frac{- \sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y - \\ - \vu{e}_\tau - &= \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y - \\ - \vu{e}_z - &= \vu{e}_z - \end{aligned} - } -\end{aligned}$$ - -The basic vector operations (gradient, divergence, Laplacian and curl) are given by: - -$$\begin{aligned} - \boxed{ - \nabla f - = \frac{\mathbf{e}_\sigma}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\sigma} - + \frac{\mathbf{e}_\tau}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\tau} - + \mathbf{e}_z \pdv{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla \cdot \mathbf{V} - = \frac{1}{\sigma^2 + \tau^2} - \Big( \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{d\sigma} + \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{d\tau} \Big) + \pdv{V_z}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla^2 f - = \frac{1}{\sigma^2 + \tau^2} \Big( \pdv[2]{f}{\sigma} + \pdv[2]{f}{\tau} \Big) + \pdv[2]{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \times \mathbf{V} - &= \mathbf{e}_\sigma \Big( \frac{\mathbf{e}_1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \Big) - \\ - &+ \mathbf{e}_\tau \Big( \pdv{V_\sigma}{z} - \frac{1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\sigma} \Big) - \\ - &+ \frac{\mathbf{e}_z}{\sigma^2 + \tau^2} - \Big( \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{\sigma} - \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{\tau} \Big) - \end{aligned} - } -\end{aligned}$$ - -The differential element of volume $\dd{V}$ -in parabolic cylindrical coordinates is given by: - -$$\begin{aligned} - \boxed{ - \dd{V} = (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} \dd{z} - } -\end{aligned}$$ - -The differential elements of the isosurfaces are as follows, -where $\dd{S_\sigma}$ is the $\sigma$-isosurface, etc.: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \dd{S_\sigma} &= \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} - \\ - \dd{S_\tau} &= \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} - \\ - \dd{S_z} &= (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} - \end{aligned} - } -\end{aligned}$$ - -The normal element $\dd{\vu{S}}$ of a surface and -the tangent element $\dd{\vu{\ell}}$ of a curve are respectively: - -$$\begin{aligned} - \boxed{ - \dd{\vu{S}} - = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} - + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} - + \mathbf{e}_z (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \dd{\vu{\ell}} - = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\sigma} - + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\tau} - + \mathbf{e}_z \dd{z} - } -\end{aligned}$$ - - -## References -1. M.L. Boas, - *Mathematical methods in the physical sciences*, 2nd edition, - Wiley. diff --git a/content/know/concept/path-integral-formulation/index.pdc b/content/know/concept/path-integral-formulation/index.pdc index c66aed8..1698e27 100644 --- a/content/know/concept/path-integral-formulation/index.pdc +++ b/content/know/concept/path-integral-formulation/index.pdc @@ -27,7 +27,7 @@ to the destination $x_N$ at time $t_N$: $$\begin{aligned} \boxed{ K(x_N, t_N; x_0, t_0) - = A \sum_{\mathrm{all}\:x(t)} \exp(i S[x] / \hbar) + = A \sum_{\mathrm{all}\:x(t)} \exp\!(i S[x] / \hbar) } \end{aligned}$$ @@ -156,7 +156,7 @@ The definition of the propagator $K$ is then further reduced to the following: $$\begin{aligned} K = \Big( \frac{- i m}{2 \pi \hbar \Delta t} \Big)^{\!N / 2} - \idotsint \exp(i S[x] / \hbar) \dd{x_1} \cdots \dd{x_{N-1}} + \idotsint \exp\!(i S[x] / \hbar) \dd{x_1} \cdots \dd{x_{N-1}} \end{aligned}$$ Finally, for the purpose of normalization, @@ -173,8 +173,8 @@ which sums over all possible paths $x(t)$: $$\begin{aligned} K - = \int \exp(i S[x] / \hbar) \:D[x] - = A \sum_{\mathrm{all}\:x(t)} \exp(i S[x] / \hbar) + = \int \exp\!(i S[x] / \hbar) \:D[x] + = A \sum_{\mathrm{all}\:x(t)} \exp\!(i S[x] / \hbar) \end{aligned}$$ diff --git a/content/know/concept/rayleigh-plesset-equation/index.pdc b/content/know/concept/rayleigh-plesset-equation/index.pdc index ee8622b..9325f3f 100644 --- a/content/know/concept/rayleigh-plesset-equation/index.pdc +++ b/content/know/concept/rayleigh-plesset-equation/index.pdc @@ -19,34 +19,29 @@ describes how the radius of a spherical bubble evolves in time inside an incompressible liquid. Notably, it leads to [cavitation](/know/concept/cavitation/). - -## Simple form - -The simplest version of the Rayleigh-Plesset equation is found -in the limiting case of a liquid with zero viscosity zero surface tension. - -Consider one of the [Euler equations](/know/concept/euler-equations/) -for the velocity field $\va{v}$, -where $\rho$ is the (constant) density: +Consider the main +[Navier-Stokes equations](/know/concept/navier-stokes-equations/) +for the velocity field $\va{v}$: $$\begin{aligned} \frac{\mathrm{D} \va{v}}{\mathrm{D} t} = \pdv{\va{v}}{t} + (\va{v} \cdot \nabla) \va{v} - = - \frac{\nabla p}{\rho} + = - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v} \end{aligned}$$ We make the ansatz $\va{v} = v(r, t) \vu{e}_r$, where $\vu{e}_r$ is the basis vector; in other words, we demand that the only spatial variation of the flow is in $r$. -The above Euler equation then becomes: +The above equation then becomes: $$\begin{aligned} \pdv{v}{t} + v \pdv{v}{r} = - \frac{1}{\rho} \pdv{p}{r} + + \nu \bigg( \frac{1}{r^2} \pdv{r} \Big( r^2 \pdv{v}{r} \Big) - \frac{2}{r^2} v \bigg) \end{aligned}$$ Meanwhile, the incompressibility condition -is as follows in this situation: +in [spherical coordinates](/know/concept/spherical-coordinates/) yields: $$\begin{aligned} \nabla \cdot \va{v} @@ -63,42 +58,75 @@ $$\begin{aligned} \end{aligned}$$ Where $C(t)$ is an unknown function that does not depend on $r$. -We then insert this result in the earlier Euler equation, +We then insert this result in the main Navier-Stokes equation, and isolate it for $\pdv*{p}{r}$, yielding: $$\begin{aligned} \pdv{p}{r} - = - \rho \bigg( \pdv{v}{t} + v \pdv{v}{r} \bigg) + = - \rho \bigg( \frac{1}{r^2} C' - \frac{2}{r^5} C^2 + - \nu \Big( \frac{2}{r^4} C - \frac{2}{r^4} C \Big) \bigg) = - \rho \bigg( \frac{1}{r^2} C' - \frac{2}{r^5} C^2 \bigg) \end{aligned}$$ Integrating this with respect to $r$ yields the following expression for $p$, -where $p_\infty$ is the (possibly time-dependent) pressure at $r = \infty$: +where $p_\infty(t)$ is the (possibly time-dependent) pressure at $r = \infty$: + +$$\begin{aligned} + p(r) + = p_\infty + \rho \bigg( \frac{1}{r} C' - \frac{1}{2 r^4} C^2 \bigg) +\end{aligned}$$ + +From the definition of [viscosity](/know/concept/viscosity/), +we know that the normal [stress](/know/concept/cauchy-stress-tensor/) +$\sigma_{rr}$ in the liquid is given by: + +$$\begin{aligned} + \sigma_{rr}(r) + = - p(r) + 2 \rho \nu \pdv{v(r)}{r} +\end{aligned}$$ + +We now consider a spherical bubble +with radius $R(t)$ and interior pressure $P(t)$ along its surface. +Since we know the liquid pressure $p(r)$, +we can find $P$ from $\sigma_{rr}(r)$. +Furthermore, to include the effects of surface tension, we simply add +the [Young-Laplace law](/know/concept/young-laplace-law/) to $P$: + +$$\begin{aligned} + P + = - \sigma_{rr}(R) + \alpha \frac{2}{R} + = p(R) - 2 \rho \nu \Big( \frac{-2}{R^3} C \Big) + \alpha \frac{2}{R} +\end{aligned}$$ + +We isolate this for $p(R)$, and equate it to +our expression for $p(r)$ +at the surface $r\!=\!R$: $$\begin{aligned} - p(r, t) - = p_\infty(t) + \rho \bigg( \frac{1}{r} C'(t) - \frac{1}{2 r^4} C^2(t) \bigg) + P - \rho \nu \frac{4}{R^3} C - \alpha \frac{2}{R} + = p_\infty + \rho \bigg( \frac{1}{R} C' - \frac{1}{2 R^4} C^2 \bigg) \end{aligned}$$ -We now consider a spherical bubble with radius $R(t)$ and pressure $P(t)$ along the liquid surface. -To study the liquid boundary's movement, we set $r = R$ and $p = P$, -and see that $R'(t) = v(t)$, such that $C = r^2 V = R^2 R'$. -We thus arrive at: +Isolating for $P$, +and inserting the fact that $R'(t) = v(t)$, +such that $C = r^2 v = R^2 R'$, +yields: $$\begin{aligned} P - &= p_\infty + \rho \bigg( \frac{1}{R} \dv{(R^2 R')}{t} - \frac{1}{2 R^4} (R^2 R')^2 \bigg) + &= p_\infty + \rho \bigg( \frac{1}{R} \dv{(R^2 R')}{t} - \frac{1}{2 R^4} (R^2 R')^2 + + \nu \frac{4}{R^3} (R^2 R') \bigg) + \alpha \frac{2}{R} \\ - &= p_\infty + \rho \bigg( 2 (R')^2 + R R'' - \frac{1}{2} (R')^2 \bigg) + &= p_\infty + \rho \bigg( 2 (R')^2 + R R'' - \frac{1}{2} (R')^2 + \nu \frac{4}{R} R' \bigg) + \alpha \frac{2}{R} \end{aligned}$$ -Rearranging this and defining $\Delta p = P - p_\infty$ -leads to the simple Rayleigh-Plesset equation: +Rearranging this and defining $\Delta p \equiv P - p_\infty$ +leads to the Rayleigh-Plesset equation: $$\begin{aligned} \boxed{ - R \dv[2]{R}{t} + \frac{3}{2} \bigg( \dv{R}{t} \bigg)^2 - = \frac{\Delta p}{\rho} + \frac{\Delta p}{\rho} + = R \dv[2]{R}{t} + \frac{3}{2} \bigg( \dv{R}{t} \bigg)^2 + \nu \frac{4}{R} \dv{R}{t} + \frac{\alpha}{\rho} \frac{2}{R} } \end{aligned}$$ diff --git a/content/know/concept/spherical-coordinates/index.pdc b/content/know/concept/spherical-coordinates/index.pdc index 4338ab4..4768110 100644 --- a/content/know/concept/spherical-coordinates/index.pdc +++ b/content/know/concept/spherical-coordinates/index.pdc @@ -50,9 +50,6 @@ $$\begin{aligned} } \end{aligned}$$ -The spherical basis vectors $\vu{e}_r$, $\vu{e}_\theta$ and $\vu{e}_\varphi$ -are expressed in the Cartesian basis like so: - The spherical coordinate system is an orthogonal [curvilinear](/know/concept/curvilinear-coordinates/) system, whose scale factors $h_r$, $h_\theta$ and $h_\varphi$ we want to find. @@ -67,7 +64,7 @@ $$\begin{aligned} \end{aligned}$$ And then we calculate the line element $\dd{\ell}^2$, -skipping many terms thanks to orthogonality, +skipping many terms thanks to orthogonality: $$\begin{aligned} \dd{\ell}^2 @@ -94,7 +91,7 @@ $$\begin{aligned} } \end{aligned}$$ -With to these factors, we can easily convert things from the Cartesian system +With these factors, we can easily convert things from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates. The basis vectors are: @@ -164,7 +161,7 @@ $$\begin{aligned} } \end{aligned}$$ -So, for example, an integral over all of space in Cartesian is converted like so: +So, for example, an integral over all of space is converted like so: $$\begin{aligned} \iiint_{-\infty}^\infty f(x, y, z) \dd{V} -- cgit v1.2.3