--- title: "Bernstein-Vazirani algorithm" firstLetter: "B" publishDate: 2021-05-01 categories: - Quantum information - Algorithms date: 2021-04-13T10:28:44+02:00 draft: false markup: pandoc --- # Bernstein-Vazirani algorithm In quantum information, the **Bernstein-Vazirani algorithm** proves the supremacy of quantum computers over classical deterministic or probabilistic computers. It is extremely similar to the [Deutsch-Jozsa algorithm](/know/concept/deutsch-jozsa-algorithm/), and even uses the same circuit. It solves a very artificial problem: we are given a "black box" function $f(x)$ that takes an $N$-bit $x$ and returns a single bit, which we are promised is the lowest bit of the bitwise dot product of $x$ with an unknown $N$-bit string $s$: $$\begin{aligned} f(x) = s \cdot x \:\:(\bmod 2) = (s_1 x_1 + s_2 x_2 + \:...\: + s_N x_N) \:\:(\bmod 2) \end{aligned}$$ The goal is to find $s$. To solve this problem, a classical computer would need to call $f(x)$ exactly $N$ times with $x = 2^n$ for $n \in \{ 0, ..., N \!-\! 1\}$. However, the Bernstein-Vazirani algorithm allows a quantum computer to do it with only a single query. It uses the following circuit: Where $U_f$ is a phase oracle, whose action is defined as follows, where $\ket{x} = \ket{x_1} \cdots \ket{x_N}$: $$\begin{aligned} \ket{x} \quad \to \boxed{U_f} \to \quad (-1)^{f(x)} \ket{x} = (-1)^{s \cdot x} \ket{x} \end{aligned}$$ That is, it introduces a phase flip based on the value of $f(x)$. For an example implementation of such an oracle, see the Deutsch-Jozsa algorithm: its circuit is identical to this one, but describes $U_f$ in a different (but equivalent) way. Starting from the state $\ket{0}^{\otimes N}$, applying the [Hadamard gate](/know/concept/hadamard-gate/) $H$ to all qubits yields: $$\begin{aligned} \ket{0}^{\otimes N} \quad \to \boxed{H^{\otimes N}} \to \quad \ket{+}^{\otimes N} = \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} \ket{x} \end{aligned}$$ This is an equal superposition of all candidates $\ket{x}$, which we feed to the oracle: $$\begin{aligned} \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} \ket{x} \quad \to \boxed{U_f} \to \quad \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{s \cdot x} \ket{x} \end{aligned}$$ Then, thanks to the definition of the Hadamard transform, a final set of $H$-gates leads us to: $$\begin{aligned} \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{s \cdot x} \ket{x} \quad \to \boxed{H^{\otimes N}} \to \quad \ket{s} = \ket{s_1} \cdots \ket{s_N} \end{aligned}$$ Which, upon measurement, gives us the desired binary representation of $s$. For comparison, the Deutsch-Jozsa algorithm only cares whether $s = 0$ or $s \neq 0$, whereas this algorithm is interested in the exact value of $s$. ## References 1. J.S. Neergaard-Nielsen, *Quantum information: lectures notes*, 2021, unpublished. 2. S. Aaronson, *Introduction to quantum information science: lecture notes*, 2018, unpublished.