--- title: "Electric dipole approximation" firstLetter: "E" publishDate: 2021-09-14 categories: - Physics - Quantum mechanics - Optics date: 2021-09-14T13:11:54+02:00 draft: false markup: pandoc --- # Electric dipole approximation Suppose that an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) is travelling through an atom, and affecting the electrons. The general Hamiltonian of an electron in such a wave is given by: $$\begin{aligned} \hat{H} &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{2 m} (\vec{A} \cdot \vec{P} + \vec{P} \cdot \vec{A}) + \frac{q^2 \vec{A}{}^2}{2m} + V \end{aligned}$$ With charge $q = - e$ and electromagnetic vector potential $\vec{A}(\vec{r}, t)$. We reduce this by fixing the Coulomb gauge $\nabla \cdot \vec{A} = 0$, so that $\vec{A} \cdot \vec{P} = \vec{P} \cdot \vec{A}$, and assume that $\vec{A}{}^2$ is negligible: $$\begin{aligned} \hat{H} = \hat{H}_0 + \hat{H}_1 \qquad \quad \hat{H}_0 \equiv \frac{\vec{P}{}^2}{2 m} + V \qquad \quad \hat{H}_1 \equiv - \frac{q}{m} \vec{P} \cdot \vec{A} \end{aligned}$$ We have split $\hat{H}$ into $\hat{H}_0$ and a perturbation $\hat{H}_1$, since $\vec{A}$ is small. In an electromagnetic wave, $\vec{A}$ is oscillating sinusoidally in time and space as follows: $$\begin{aligned} \vec{A}(\vec{r}, t) = \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) \end{aligned}$$ The corresponding perturbative [electric field](/know/concept/electric-field/) $\vec{E}$ points in the same direction: $$\begin{aligned} \vec{E}(\vec{r}, t) = - \pdv{\vec{A}}{t} = \vec{E}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) \end{aligned}$$ Where $\vec{E}_0 = i \omega \vec{A}_0$. Let us restrict ourselves to visible light, whose wavelength $2 \pi / k \approx 10^{-6} \:\mathrm{m}$. Meanwhile, an atomic orbital is on the order of $10^{-10} \:\mathrm{m}$, so $\vec{k} \cdot \vec{r}$ is negligible: $$\begin{aligned} \boxed{ \vec{E}(\vec{r}, t) \approx \vec{E}_0 \exp\!(- i \omega t) } \end{aligned}$$ This is the **electric dipole approximation**: we ignore all spatial variation of $\vec{E}$, and only consider its temporal oscillation. Also, since we have not used the word "photon", we are implicitly treating the radiation classically, and the electron quantum-mechanically. Next, we want to convert $\hat{H}_1$ to use the electric field $\vec{E}$ instead of the potential $\vec{A}$. To do so, we rewrite the momemtum $\vec{P} = m \: \dv*{\vec{r}}{t}$ and evaluate this in the [Heisenberg picture](/know/concept/heisenberg-picture/): $$\begin{aligned} \matrixel{2}{\dv*{\vec{r}}{t}}{1} &= \frac{i}{\hbar} \matrixel{2}{[\hat{H}_0, \vec{r}]}{1} = \frac{i}{\hbar} \matrixel{2}{\hat{H}_0 \vec{r} - \vec{r} \hat{H}_0}{1} \\ &= \frac{i}{\hbar} (E_2 - E_1) \matrixel{2}{\vec{r}}{1} = i \omega_0 \matrixel{2}{\vec{r}}{1} \end{aligned}$$ Therefore, $\vec{P} / m = i \omega_0 \vec{r}$, where $\omega_0 \equiv (E_2 - E_1) / \hbar$ is the resonance frequency of the transition, close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating. We thus get: $$\begin{aligned} \hat{H}_1(t) &= - \frac{q}{m} \vec{P} \cdot \vec{A} = - i q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t) \\ &= - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t) = - \vec{d} \cdot \vec{E}_0 \exp\!(- i \omega t) \end{aligned}$$ Where $\vec{d} \equiv q \vec{r} = - e \vec{r}$ is the **transition dipole moment operator** of the electron, hence the name **electric dipole approximation**. Finally, since electric fields are actually real (we let it be complex for mathematical convenience), we take the real part, yielding: $$\begin{aligned} \boxed{ \hat{H}_1(t) = - q \vec{r} \cdot \vec{E}_0 \cos\!(\omega t) } \end{aligned}$$ If this approximation is too rough, $\vec{E}$ can always be Taylor-expanded in $(i \vec{k} \cdot \vec{r})$: $$\begin{aligned} \vec{E}(\vec{r}, t) = \vec{E}_0 \Big( 1 + (i \vec{k} \cdot \vec{r}) + \frac{1}{2} (i \vec{k} \cdot \vec{r})^2 + \: ... \Big) \exp\!(- i \omega t) \end{aligned}$$ Taking the real part then yields the following series of higher-order correction terms: $$\begin{aligned} \vec{E}(\vec{r}, t) = \vec{E}_0 \Big( \cos\!(\omega t) + (\vec{k} \cdot \vec{r}) \sin\!(\omega t) - \frac{1}{2} (\vec{k} \cdot \vec{r})^2 \cos\!(\omega t) + \: ... \Big) \end{aligned}$$ ## References 1. M. Fox, *Optical properties of solids*, 2nd edition, Oxford. 2. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge.