--- title: "Fabry-Pérot cavity" firstLetter: "F" publishDate: 2021-09-18 categories: - Physics - Optics date: 2021-09-18T00:42:59+02:00 draft: false markup: pandoc --- # Fabry-Pérot cavity In its simplest form, a **Fabry-Pérot cavity** is a region of light-transmitting medium surrounded by two mirrors, which may transmit some of the incoming light. Such a setup can be used as e.g. an interferometer or a laser cavity. ## Modes of macroscopic cavity Consider a Fabry-Pérot cavity large enough that we can neglect the mirrors' thicknesses, which have reflection coefficients $r_L$ and $r_R$. Let $\tilde{n}_C$ be the complex refractive index inside, and $\tilde{n}_L$ and $\tilde{n}_R$ be the indices outside. The cavity has length $L$, centered on $x = 0$. To find the quasinormal modes, we make the following ansatz, with mode number $m$: $$\begin{aligned} E_m(x) = \begin{cases} A_m \exp\!(-i \tilde{n}_L \tilde{k}_m x) & \mathrm{if}\; x < -L/2 \\ B_m \exp\!(i \tilde{n}_C \tilde{k}_m x) + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m x) & \mathrm{if}\; -\!L/2 < x < L/2 \\ D_m \exp\!(i \tilde{n}_R \tilde{k}_m x) & \mathrm{if}\; L/2 < x \end{cases} \end{aligned}$$ On the left, $B_m$ is the reflection of $C_m$, and on the right, $C_m$ is the reflection of $B_m$, where the reflected amplitude is determined by the coefficients $r_L$ and $r_L$, respectively: $$\begin{aligned} B_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) &= r_L C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) \\ C_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) &= r_R B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) \end{aligned}$$ These equations might seem to contradict each other. We recast them into matrix form: $$\begin{aligned} \begin{bmatrix} 1 & - r_L \exp\!(i \tilde{n}_C \tilde{k}_m L) \\ - r_R \exp\!(i \tilde{n}_C \tilde{k}_m L) & 1 \end{bmatrix} \cdot \begin{bmatrix} B_m \\ C_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{aligned}$$ Now, we do not want to be able to find values for $B_m$ and $C_m$ that satisfy this for a given $\tilde{k}_m$. Instead, we only want specific values of $\tilde{k}_m$ to be allowed, corresponding to the cavity's modes. We thus demand that the determinant to zero: $$\begin{aligned} 0 &= 1 - r_L r_R \exp\!(i 2 \tilde{n}_C \tilde{k}_m L) \end{aligned}$$ Isolating this for $\tilde{k}_m$ yields the following modes, where $m$ is an arbitrary integer: $$\begin{aligned} \boxed{ \tilde{k}_m = - \frac{\ln\!(r_L r_R) + i 2 \pi m}{i 2 \tilde{n}_C L} } \end{aligned}$$ These $\tilde{k}_m$ satisfy the matrix equation above. Thanks to linearity, we can choose one of $B_m$ or $C_m$, and then the other is determined by the corresponding equation. Finally, we look at the light transmitted through the mirrors, according to $1 \!-\! r_L$ and $1 \!-\! r_R$: $$\begin{aligned} A_m \exp\!(i \tilde{n}_L \tilde{k}_m L/2) &= (1 - r_L) C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) \\ D_m \exp\!(i \tilde{n}_R \tilde{k}_m L/2) &= (1 - r_R) B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) \end{aligned}$$ We simply isolate for $A_m$ and $D_m$ respectively, yielding the following amplitudes: $$\begin{aligned} A_m &= (1 - r_L) C_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_L) \tilde{k}_m L/2 \big) \\ D_m &= (1 - r_R) B_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_R) \tilde{k}_m L/2 \big) \end{aligned}$$ ## References 1. P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch, [Modeling electromagnetic resonators using quasinormal modes](https://doi.org/10.1364/AOP.377940), 2020, Optical Society of America.