--- title: "Green's functions" firstLetter: "G" publishDate: 2021-11-03 categories: - Physics - Quantum mechanics date: 2021-11-01T09:46:27+01:00 draft: false markup: pandoc --- # Green's functions In many-body quantum theory, a **Green's function** can be any correlation function between two given operators, although it is usually used to refer to the special case where the operators are particle creation/annihilation operators from the [second quantization](/know/concept/second-quantization/). They are somewhat related to [fundamental solutions](/know/concept/fundamental-solution/), which are also called *Green's functions*, but in general they are not the same, except in a special case, see below. ## Single-particle functions If the two operators are single-particle creation/annihilation operators, then we get the **single-particle Green's functions**, for which the symbol $G$ is used. The **retarded Green's function** $G_{\nu \nu'}^R$ and the **advanced Green's function** $G_{\nu \nu'}^A$ are defined like so, where the expectation value $\expval{}$ is with respect to thermodynamic equilibrium, $\nu$ and $\nu'$ are labels of single-particle states, and $\hat{c}_\nu$ annihilates a particle from $\nu$, etc.: $$\begin{aligned} \boxed{ \begin{aligned} G_{\nu \nu'}^R(t, t') &\equiv -\frac{i}{\hbar} \Theta(t - t') \expval{\comm*{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}} \\ G_{\nu \nu'}^A(t, t') &\equiv \frac{i}{\hbar} \Theta(t' - t) \expval{\comm*{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}} \end{aligned} } \end{aligned}$$ Where $\Theta$ is a [Heaviside function](/know/concept/heaviside-step-function/), and $[,]_{\mp}$ is a commutator for bosons, and an anticommutator for fermions. We are in the [Heisenberg picture](/know/concept/heisenberg-picture/), hence $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$ are time-dependent, but keep in mind that time-dependent Hamiltonians are allowed, so it might not be trivial. Furthermore, the **greater Green's function** $G_{\nu \nu'}^>$ and **lesser Green's function** $G_{\nu \nu'}^<$ are: $$\begin{aligned} \boxed{ \begin{aligned} G_{\nu \nu'}^>(t, t') &\equiv -\frac{i}{\hbar} \expval{\hat{c}_{\nu}(t) \: \hat{c}_{\nu'}^\dagger(t')} \\ G_{\nu \nu'}^<(t, t') &\equiv \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu'}^\dagger(t') \: \hat{c}_{\nu}(t)} \end{aligned} } \end{aligned}$$ Where $-$ is for bosons, and $+$ is for fermions. The retarded and advanced Green's functions can thus be expressed as follows: $$\begin{aligned} G_{\nu \nu'}^R(t, t') &= \Theta(t - t') \Big( G_{\nu \nu'}^>(t, t') - G_{\nu \nu'}^<(t, t') \Big) \\ G_{\nu \nu'}^A(t, t') &= \Theta(t' - t) \Big( G_{\nu \nu'}^<(t, t') - G_{\nu \nu'}^>(t, t') \Big) \end{aligned}$$ If the Hamiltonian involves interactions, it might be more natural to use quantum field operators $\hat{\Psi}(\vb{r}, t)$ instead of choosing a basis of single-particle states $\psi_\nu$. In that case, instead of a label $\nu$, we use the spin $s$ and position $\vb{r}$, leading to: $$\begin{aligned} G_{ss'}^R(\vb{r}, t; \vb{r}', t') &= -\frac{i}{\hbar} \Theta(t - t') \expval{\comm*{\hat{\Psi}_{s}(\vb{r}, t)}{\hat{\Psi}_{s'}^\dagger(\vb{r}', t')}_{\mp}} \\ &= \sum_{\nu \nu'} \psi_\nu(\vb{r}) \: \psi^*_{\nu'}(\vb{r}') \: G_{\nu \nu'}^R(t, t') \end{aligned}$$ And analogously for $G_{ss'}^A$, $G_{ss'}^>$ and $G_{ss'}^<$. Note that the time-dependence is given to the old $G_{\nu \nu'}^R$, i.e. to $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$, because we are in the Heisenberg picture. If the Hamiltonian is time-independent, then it can be shown that all the Green's functions only depend on the time-difference $t - t'$: $$\begin{aligned} G_{\nu \nu'}^R(t, t') = G_{\nu \nu'}^R(t - t') \qquad \quad G_{\nu \nu'}^A(t, t') = G_{\nu \nu'}^A(t - t') \\ G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t') \qquad \quad G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t') \end{aligned}$$
If the Hamiltonian is both time-independent and non-interacting, then the time-dependence of $\hat{c}_\nu$ can simply be factored out as $\hat{c}_\nu(t) = \hat{c}_\nu \exp\!(- i \varepsilon_\nu t / \hbar)$. Then the diagonal ($\nu = \nu'$) greater and lesser Green's functions can be written in the form below, where $f_\nu$ is either the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) or the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/). $$\begin{aligned} G_{\nu \nu}^>(t, t') &= -\frac{i}{\hbar} \expval{\hat{c}_{\nu} \hat{c}_{\nu}^\dagger} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ &= -\frac{i}{\hbar} (1 - f_\nu) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ G_{\nu \nu}^<(t, t') &= \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu}^\dagger \hat{c}_{\nu}} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ &= \mp \frac{i}{\hbar} f_\nu \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \end{aligned}$$ ## As fundamental solutions In the absence of interactions, we know from the derivation of [equation-of-motion theory](/know/concept/equation-of-motion-theory/) that the equation of motion of $G^R(\vb{r}, t; \vb{r}', t')$ is as follows (neglecting spin): $$\begin{aligned} i \hbar \pdv{G^R}{t} = \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') + \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm{\comm*{\hat{H}_0}{\hat{\Psi}(\vb{r}, t)}}{\hat{\Psi}^\dagger(\vb{r}', t')}} \end{aligned}$$ If $\hat{H}_0$ only contains kinetic energy, i.e. there is no external potential, it can be shown that: $$\begin{aligned} \comm*{\hat{H}_0}{\hat{\Psi}(\vb{r})} = \frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r}) \end{aligned}$$
After substituting this into the equation of motion, we recognize $G^R(\vb{r}, t; \vb{r}', t')$ itself: $$\begin{aligned} i \hbar \pdv{G^R}{t} &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') + \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm{\frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r}, t)}{\hat{\Psi}^\dagger(\vb{r}', t')}} \\ &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') - \frac{\hbar^2}{2 m} \nabla_\vb{r}^2 \Big( \!-\! \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm{\hat{\Psi}(\vb{r}, t)}{\hat{\Psi}^\dagger(\vb{r}', t')}} \Big) \\ &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') - \frac{\hbar^2}{2 m} \nabla_\vb{r}^2 G^R(\vb{r}, t; \vb{r}', t') \end{aligned}$$ Rearranging this leads to the following, which is the definition of a fundamental solution: $$\begin{aligned} \Big( i \hbar \pdv{t} + \frac{\hbar^2}{2 m} \nabla_\vb{r}^2 \Big) G^R(\vb{r}, t; \vb{r}', t') &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') \end{aligned}$$ Therefore, the retarded Green's function (and, it turns out, the advanced Green's function too) is a fundamental solution of the Schrödinger equation if there is no potential, i.e. the Hamiltonian only contains kinetic energy. ## Two-particle functions The above can be generalized to two arbitrary operators $\hat{A}$ and $\hat{B}$, giving us the **two-particle Green's functions**, or just **correlation functions**. The **retarded correlation function** $C_{AB}^R$ and the **advanced correlation function** $C_{AB}^A$ are defined as (in the Heisenberg picture): $$\begin{aligned} \boxed{ \begin{aligned} C_{AB}^R(t, t') &\equiv -\frac{i}{\hbar} \Theta(t - t') \expval{\comm*{\hat{A}(t)}{\hat{B}(t')}_{\mp}} \\ C_{AB}^A(t, t') &\equiv \frac{i}{\hbar} \Theta(t' - t) \expval{\comm*{\hat{A}(t)}{\hat{B}(t')}_{\mp}} \end{aligned} } \end{aligned}$$ Where the expectation value $\expval{}$ is taken of thermodynamic equilibrium. The name *two-particle* comes from the fact that $\hat{A}$ and $\hat{B}$ will often consist of a sum of products of two single-particle creation/annihilation operators. Like for the single-particle Green's functions, if the Hamiltonian is time-independent, then it can be shown that $C_{AB}^R$ and $C_{AB}^A$ only depend on the time-difference $t - t'$: $$\begin{aligned} G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t') \qquad \quad G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t') \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.