--- title: "Green's functions" firstLetter: "G" publishDate: 2021-11-03 categories: - Physics - Quantum mechanics date: 2021-11-01T09:46:27+01:00 draft: false markup: pandoc --- # Green's functions In many-body quantum theory, **Green's functions** are correlation functions between particle creation/annihilation operators. They are somewhat related to [fundamental solution](/know/concept/fundamental-solution/) functions, which are also often called *Green's functions*. The **retarded Green's function** $G_{\nu \nu'}^R$ and the **advanced Green's function** $G_{\nu \nu'}^A$ are defined like so, where the expectation value $\expval{}$ is with respect to thermal equilibrium, $\nu$ and $\nu'$ are labels of single-particle states that may include spin, and $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$ are annihilation/creation operators from the [second quantization](/know/concept/second-quantization/): $$\begin{aligned} \boxed{ \begin{aligned} G_{\nu \nu'}^R(t, t') &\equiv -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}} \\ G_{\nu \nu'}^A(t, t') &\equiv \frac{i}{\hbar} \Theta(t' - t) \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}} \end{aligned} } \end{aligned}$$ Where $\Theta$ is the [Heaviside step function](/know/concept/heaviside-step-function/). This is for bosons; for fermions the commutator must be replaced by an anticommutator, as usual. Notice that $G^R_{\nu \nu'}$ has the same form as the correlation function from the [Kubo formula](/know/concept/kubo-formula/). Furthermore, the **greater Green's function** $G_{\nu \nu'}^>$ and **lesser Green's function** $G_{\nu \nu'}^<$ are: $$\begin{aligned} \boxed{ \begin{aligned} G_{\nu \nu'}^>(t, t') &\equiv -\frac{i}{\hbar} \expval{\hat{c}_{\nu}(t) \hat{c}_{\nu'}^\dagger(t')} \\ G_{\nu \nu'}^<(t, t') &\equiv \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu'}^\dagger(t') \hat{c}_{\nu}(t)} \end{aligned} } \end{aligned}$$ Where $-$ is for bosons, and $+$ is for fermions. The retarded and advanced Green's functions can thus be expressed as follows: $$\begin{aligned} G_{\nu \nu'}^R(t, t') &= \Theta(t - t') \Big( G_{\nu \nu'}^>(t, t') - G_{\nu \nu'}^<(t, t') \Big) \\ G_{\nu \nu'}^A(t, t') &= \Theta(t' - t) \Big( G_{\nu \nu'}^<(t, t') - G_{\nu \nu'}^>(t, t') \Big) \end{aligned}$$ If the Hamiltonian involves interactions, it might be more natural to use quantum field operators $\hat{\Psi}(\vb{r}, t)$ instead of choosing a basis of single-particle states $\psi_\nu$. In that case, instead of a label $\nu$, we use the spin $s$ and position $\vb{r}$, leading to: $$\begin{aligned} G_{ss'}^R(\vb{r}, t; \vb{r}', t') &= -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{\Psi}_{s}(\vb{r}, t)}{\hat{\Psi}_{s'}^\dagger(\vb{r}', t')}} \\ &= \sum_{\nu \nu'} \psi_\nu(\vb{r}) \: \psi^*_{\nu'}(\vb{r}') \: G_{\nu \nu'}^R(t, t') \end{aligned}$$ And analogously for $G_{ss'}^A$, $G_{ss'}^>$ and $G_{ss'}^<$. Note that the time-dependence is given to the old $G_{\nu \nu'}^R$, i.e. to $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$. In other words, we are using the [Heisenberg picture](/know/concept/heisenberg-picture/). If the Hamiltonian is time-independent, then it can be shown that all the Green's functions only depend on the time-difference $t - t'$ (for a proof, see [Kubo formula](/know/concept/kubo-formula/)): $$\begin{aligned} G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t') \qquad \quad G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t') \end{aligned}$$ If the Hamiltonian is both time-independent and non-interacting, then the time-dependence of $\hat{c}_\nu$ can simply be factored out as follows: $$\begin{aligned} \hat{c}_\nu(t) = \hat{c}_\nu \exp\!(- i \varepsilon_\nu t / \hbar) \end{aligned}$$ Then the diagonal ($\nu = \nu'$) greater and lesser Green's functions can be written in the form below, where $f_\nu$ is either the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) or the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/). Note that the off-diagonal ($\nu \neq \nu'$) functions vanish, because $\expval*{\hat{c}_{\nu} \hat{c}_{\nu'}^\dagger} = 0$ there, since the many-particle states are simply orthogonal [Slater determinants](/know/concept/slater-determinant/)/permanents: $$\begin{aligned} G_{\nu \nu}^>(t, t') &= -\frac{i}{\hbar} \expval{\hat{c}_{\nu} \hat{c}_{\nu}^\dagger} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ &= -\frac{i}{\hbar} (1 - f_\nu) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ G_{\nu \nu}^<(t, t') &= \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu}^\dagger \hat{c}_{\nu}} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ &= \mp \frac{i}{\hbar} f_\nu \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \end{aligned}$$ The diagonal retarded and advanced Green's functions then reduce to the following, where $+$ applies to fermions, and $-$ to bosons: $$\begin{aligned} G_{\nu \nu}^R(t, t') &= - \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \\ G_{\nu \nu}^A(t, t') &= \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) \end{aligned}$$ ## References 1. H. Bruus, K. Flensberg, *Many-body quantum theory in condensed matter physics*, 2016, Oxford.