--- title: "Kubo formula" firstLetter: "K" publishDate: 2021-09-23 categories: - Physics - Quantum mechanics date: 2021-09-23T16:21:51+02:00 draft: false markup: pandoc --- # Kubo formula Consider the following quantum Hamiltonian, split into a main time-independent term $\hat{H}_{0,S}$ and a small time-dependent perturbation $\hat{H}_{1,S}$, which is turned on at $t = t_0$: $$\begin{aligned} \hat{H}_S(t) = \hat{H}_{0,S} + \hat{H}_{1,S}(t) \end{aligned}$$ And let $\ket{\psi_S(t)}$ be the corresponding solutions to the Schrödinger equation. Then, given a time-independent observable $\hat{A}$, its expectation value $\expval*{\hat{A}}$ evolves like so, where the subscripts $S$ and $I$ respectively refer to the Schrödinger and [interaction pictures](/know/concept/interaction-picture/): $$\begin{aligned} \expval*{\hat{A}}(t) = \matrixel{\psi_S(t)}{\hat{A}_S}{\psi_S(t)} &= \matrixel{\psi_I(t)}{\hat{A}_I(t)}{\psi_I(t)} \\ &= \matrixel{\psi_I(t_0)}{\hat{K}_I^\dagger(t, t_0) \hat{A}_I(t) \hat{K}_I(t, t_0)}{\psi_I(t_0)} \end{aligned}$$ Where the time evolution operator $\hat{K}_I(t, t_0)$ is as follows, which we Taylor-expand: $$\begin{aligned} \hat{K}_I(t, t_0) = \mathcal{T} \bigg\{ \exp\!\bigg( \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \bigg\} \approx 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \end{aligned}$$ With this, the following product of operators (as encountered earlier) can be written as: $$\begin{aligned} \hat{K}_I^\dagger \hat{A}_I \hat{K}_I &\approx \bigg( 1 + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \hat{A}_I(t) \bigg( 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \\ %&= \bigg( \hat{A}_I + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{A}_I \dd{t'} \bigg) %\bigg( 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) %\\ &\approx \hat{A}_I(t) - \frac{i}{\hbar} \int_{t_0}^t \hat{A}_I(t) \hat{H}_{1,I}(t') \dd{t'} + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{A}_I(t) \dd{t'} \end{aligned}$$ Where we have dropped the last term, because $\hat{H}_{1}$ is assumed to be so small that it only matters to first order. Here, we notice a commutator, so we can rewrite: $$\begin{aligned} \hat{K}_I^\dagger \hat{A}_I \hat{K}_I &= \hat{A}_I(t) - \frac{i}{\hbar} \int_{t_0}^t \comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')} \dd{t'} \end{aligned}$$ Returning to $\expval*{\hat{A}}$, we have the following formula, where $\expval{}$ is the expectation value for $\ket{\psi(t)}$, and $\expval{}_0$ is the expectation value for $\ket{\psi_I(t_0)}$: $$\begin{aligned} \expval*{\hat{A}}(t) = \expval*{\hat{K}_I^\dagger \hat{A}_I \hat{K}_I}_0 = \expval*{\hat{A}_I(t)}_0 - \frac{i}{\hbar} \int_{t_0}^t \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} \end{aligned}$$ Now we define $\delta\expval*{\hat{A}}(t)$ as the change of $\expval*{\hat{A}}$ due to the perturbation $\hat{H}_1$, and insert $\expval*{\hat{A}}(t)$: $$\begin{aligned} \delta\expval*{\hat{A}}(t) \equiv \expval*{\hat{A}}(t) - \expval*{\hat{A}_I}_0 = - \frac{i}{\hbar} \int_{t_0}^t \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} \end{aligned}$$ Finally, we introduce a [Heaviside step function](/know/concept/heaviside-step-function) $\Theta$ and change the integration limit accordingly, leading to the **Kubo formula** describing the response of $\expval*{\hat{A}}$ to first order in $\hat{H}_1$: $$\begin{aligned} \boxed{ \delta\expval*{\hat{A}}(t) %= - \frac{i}{\hbar} \int_{t_0}^\infty \Theta(t \!-\! t') \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} = \int_{t_0}^\infty C^R_{A H_1}(t, t') \dd{t'} } \end{aligned}$$ Where we have defined the **retarded correlation function** $C^R_{A H_1}(t, t')$ as follows: $$\begin{aligned} \boxed{ C^R_{A H_1}(t, t') \equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 } \end{aligned}$$ This result applies to bosonic operators, whereas for fermionic operators the commutator would be replaced by an anticommutator. A common situation is that $\hat{H}_1$ consists of a time-independent operator $\hat{B}$ and a time-dependent function $f(t)$, allowing us to split $C^R_{A H_1}$ as follows: $$\begin{aligned} \hat{H}_{1,S}(t) = \hat{B}_S \: f(t) \quad \implies \quad C^R_{A H_1}(t, t') = C^R_{A B}(t, t') f(t') \end{aligned}$$ Conveniently, it can be shown that in this case $C^R_{AB}$ only depends on the difference $t - t'$, if we assume that the system was initially in thermodynamic equilibrium: $$\begin{aligned} C^R_{A B}(t, t') = C^R_{A B}(t - t') \end{aligned}$$