--- title: "Langmuir waves" firstLetter: "L" publishDate: 2021-10-30 categories: - Physics - Plasma physics - Plasma waves - Perturbation date: 2021-10-15T20:31:46+02:00 draft: false markup: pandoc --- # Langmuir waves In plasma physics, **Langmuir waves** are oscillations in the electron density, which may or may not propagate, depending on the temperature. Assuming no [magnetic field](/know/concept/magnetic-field/) $\vb{B} = 0$, no ion motion $\vb{u}_i = 0$ (since $m_i \gg m_e$), and therefore no ion-electron momentum transfer, the [two-fluid equations](/know/concept/two-fluid-equations/) tell us that: $$\begin{aligned} m_e n_e \frac{\mathrm{D} \vb{u}_e}{\mathrm{D} t} = q_e n_e \vb{E} - \nabla p_e \qquad \quad \pdv{n_e}{t} + \nabla \cdot (n_e \vb{u}_e) = 0 \end{aligned}$$ These are the electron momentum and continuity equations. We also need [Gauss' law](/know/concept/maxwells-equations/): $$\begin{aligned} \varepsilon_0 \nabla \cdot \vb{E} = q_e (n_e - n_i) \end{aligned}$$ We split $n_e$, $\vb{u}_e$ and $\vb{E}$ into a base component (subscript $0$) and a perturbation (subscript $1$): $$\begin{aligned} n_e = n_{e0} + n_{e1} \qquad \quad \vb{u}_e = \vb{u}_{e0} + \vb{u}_{e1} \qquad \quad \vb{E} = \vb{E}_0 + \vb{E}_1 \end{aligned}$$ Where the perturbations $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$ are very small, and the equilibrium components $n_{e0}$, $\vb{u}_{e0}$ and $\vb{E}_0$ by definition satisfy: $$\begin{aligned} \pdv{n_{e0}}{t} = 0 \qquad \pdv{\vb{u}_{e0}}{t} = 0 \qquad \nabla n_{e0} = 0 \qquad \vb{u}_{e0} = 0 \qquad \vb{E}_0 = 0 \end{aligned}$$ We insert this decomposistion into the electron continuity equation, arguing that $n_{e1} \vb{u}_{e1}$ is small enough to neglect, leading to: $$\begin{aligned} 0 &= \pdv{(n_{e0} \!+\! n_{e1})}{t} + \nabla \cdot \Big( (n_{e0} \!+\! n_{e1}) \: (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \Big) \\ &= \pdv{n_{e1}}{t} + \nabla \cdot \Big( n_{e0} \vb{u}_{e1} + n_{e1} \vb{u}_{e1} \Big) \\ &\approx \pdv{n_{e1}}{t} + \nabla \cdot (n_{e0} \vb{u}_{e1}) = \pdv{n_{e1}}{t} + n_{e0} \nabla \cdot \vb{u}_{e1} \end{aligned}$$ Likewise, we insert it into Gauss' law, and use the plasma's quasi-neutrality $n_i = n_{e0}$ to get: $$\begin{aligned} \varepsilon_0 \nabla \cdot \big( \vb{E}_0 \!+\! \vb{E}_1 \big) = q_e (n_{e0} + n_{e1} - n_i) \quad \implies \quad \varepsilon_0 \nabla \cdot \vb{E}_1 = q_e n_{e1} \end{aligned}$$ Since we are looking for linear waves, we make the following ansatz for the perturbations: $$\begin{aligned} n_{e1}(\vb{r}, t) &= n_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) \\ \vb{u}_{e1}(\vb{r}, t) &= \vb{u}_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) \\ \vb{E}_1(\vb{r}, t) &= \vb{E}_1 \:\exp\!(i \vb{k} \cdot \vb{r} - i \omega t) \end{aligned}$$ Inserting this into the continuity equation and Gauss' law yields, respectively: $$\begin{aligned} - i \omega n_{e1} = - i n_{e0} \vb{k} \cdot \vb{u}_{e1} \qquad \quad -\! i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1} \end{aligned}$$ However, there are three unknowns $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$, so one more equation is needed. ## Cold Langmuir waves We therefore turn to the electron momentum equation. For now, let us assume that the electrons have no thermal motion, i.e. the electron temperature $T_e = 0$, so that $p_e = 0$, leaving: $$\begin{aligned} m_e n_e \frac{\mathrm{D} \vb{u}_e}{\mathrm{D} t} = q_e n_e \vb{E} \end{aligned}$$ Inserting the decomposition then gives the following, where we neglect $(\vb{u}_{e1} \cdot \nabla) \vb{u}_{e1}$ because $\vb{u}_{e1}$ is so small by assumption: $$\begin{gathered} m_e (n_{e0} \!+\! n_{e1}) \Big( \pdv{(\vb{u}_{e0} \!+\! \vb{u}_{e1})}{t} + \big( (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \cdot \nabla \big) (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \Big) = q_e \big( n_{e0} \!+\! n_{e1} \big) \big( \vb{E}_0 \!+\! \vb{E}_1 \big) \\ \implies \qquad q_e \vb{E}_1 = m_e \Big( \pdv{\vb{u}_{e1}}{t} + \big(\vb{u}_{e1} \cdot \nabla \big) \vb{u}_{e1} \Big) \approx m_e \pdv{\vb{u}_{e1}}{t} \end{gathered}$$ And then inserting our plane-wave ansatz yields the third equation we were looking for: $$\begin{aligned} -i \omega m_e \vb{u}_{e1} = q_e \vb{E}_1 \end{aligned}$$ Solving this system of three equations for $\omega^2$ gives the following dispersion relation: $$\begin{aligned} \omega^2 = \frac{\omega n_{e0}}{n_{e1}} \vb{k} \cdot \vb{u}_{e1} = \frac{i \omega n_{e0} q_e}{\omega m_e n_{e1}} \vb{k} \cdot \vb{E}_1 = \frac{i n_{e0} n_{e1} q_e^2}{i \varepsilon_0 m_e n_{e1}} = \frac{n_{e0} q_e^2}{\varepsilon_0 m_e} \end{aligned}$$ This result is known as the **plasma frequency** $\omega_p$, and describes the frequency of **cold Langmuir waves**, otherwise known as **plasma oscillations**: $$\begin{aligned} \boxed{ \omega_p = \sqrt{\frac{n_{0e} q_e^2}{\varepsilon_0 m_e}} } \end{aligned}$$ Note that this is a dispersion relation $\omega(k) = \omega_p$, but that $\omega_p$ does not contain $k$. This means that cold Langmuir waves do not propagate: the oscillation is "stationary". ## Warm Langmuir waves Next, we generalize this result to nonzero $T_e$, in which case the pressure $p_e$ is involved: $$\begin{aligned} m_e n_{e0} \pdv{\vb{u}_{e1}}{t} = q_e n_{e0} \vb{E}_1 - \nabla p_e \end{aligned}$$ From the two-fluid thermodynamic equation of state, we know that $\nabla p_e$ can be written as: $$\begin{aligned} \nabla p_e = \gamma k_B T_e \nabla n_e = \gamma k_B T_e \nabla (n_{e0} + n_{e1}) = \gamma k_B T_e \nabla n_{e1} \end{aligned}$$ With this, insertion of our plane-wave ansatz into the electron equation results in: $$\begin{aligned} -i \omega m_e n_{e0} \vb{u}_{e1} = q_e n_{e0} \vb{E}_1 - i \gamma k_B T_e n_{e1} \vb{k} \end{aligned}$$ Which once again closes the system of three equations. Solving for $\omega^2$ then gives: $$\begin{aligned} \omega^2 = \frac{\omega n_{e0}}{n_{e1}} \vb{k} \cdot \vb{u}_{e1} &= \frac{i \omega n_{e0}}{\omega n_{e0} m_e n_{e1}} \vb{k} \cdot \Big( q_e n_{e0} \vb{E}_1 - i \gamma k_B T_e n_{e1} \vb{k} \Big) \\ &= \frac{n_{e0} q_e^2}{\varepsilon_0 m_e} - \frac{i \omega}{\omega m_e n_{e1}} i \gamma k_B T_e n_{e1} \big(\vb{k} \cdot \vb{k}\big) \end{aligned}$$ Recognizing the first term as the plasma frequency $\omega_p^2$, we therefore arrive at the **Bohm-Gross dispersion relation** $\omega(\vb{k})$ for **warm Langmuir waves**: $$\begin{aligned} \boxed{ \omega^2 = \omega_p^2 + \frac{\gamma k_B T_e}{m_e} |\vb{k}|^2 } \end{aligned}$$ This expression is typically quoted for 1D oscillations, in which case $\gamma = 3$ and $k = |\vb{k}|$: $$\begin{aligned} \omega^2 = \omega_p^2 + \frac{3 k_B T_e}{m_e} k^2 \end{aligned}$$ Unlike for $T_e = 0$, these "warm" waves do propagate, carrying information at group velocity $v_g$, which, in the limit of large $k$, is given by: $$\begin{aligned} v_g = \pdv{\omega}{k} \to \sqrt{\frac{3 k_B T_e}{m_e}} \end{aligned}$$ This is the root-mean-square velocity of the [Maxwell-Boltzmann speed distribution](/know/concept/maxwell-boltzmann-distribution/), meaning that information travels at the thermal velocity for large $k$. ## References 1. F.F. Chen, *Introduction to plasma physics and controlled fusion*, 3rd edition, Springer. 2. M. Salewski, A.H. Nielsen, *Plasma physics: lecture notes*, 2021, unpublished.