--- title: "Propagator" firstLetter: "P" publishDate: 2021-07-04 categories: - Physics - Quantum mechanics date: 2021-07-04T10:46:47+02:00 draft: false markup: pandoc --- # Propagator In quantum mechanics, the **propagator** $K(x_f, t_f; x_i, t_i)$ gives the probability amplitude that a particle starting at $x_i$ at $t_i$ ends up at position $x_f$ at $t_f$. It is defined as follows: $$\begin{aligned} \boxed{ K(x_f, t_f; x_i, t_i) \equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i} } \end{aligned}$$ Where $\hat{U} \equiv \exp\!(- i t \hat{H} / \hbar)$ is the time-evolution operator. The probability that a particle travels from $(x_i, t_i)$ to $(x_f, t_f)$ is then given by: $$\begin{aligned} P &= \big| K(x_f, t_f; x_i, t_i) \big|^2 \end{aligned}$$ Given a general (i.e. non-collapsed) initial state $\psi_i(x) \equiv \psi(x, t_i)$, we must integrate over $x_i$: $$\begin{aligned} P &= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2 \end{aligned}$$ And if the final state $\psi_f(x) \equiv \psi(x, t_f)$ is not a basis vector either, then we integrate twice: $$\begin{aligned} P &= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2 \end{aligned}$$ Given a $\psi_i(x)$, the propagator can also be used to find the full final wave function: $$\begin{aligned} \boxed{ \psi(x_f, t_f) = \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i } \end{aligned}$$ Sometimes the name "propagator" is also used to refer to the [fundamental solution](/know/concept/fundamental-solution/) $G$ of the time-dependent Schrödinger equation, which is related to $K$ by: $$\begin{aligned} \boxed{ G(x_f, t_f; x_i, t_i) = - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i) } \end{aligned}$$ Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/).