---
title: "Self-energy"
firstLetter: "S"
publishDate: 2021-11-21
categories:
- Physics
- Quantum mechanics
date: 2021-11-15T21:02:02+01:00
draft: false
markup: pandoc
---
# Self-energy
Suppose we have a time-independent Hamiltonian $\hat{H} = \hat{H}_0 + \hat{W}$,
consisting of a simple $\hat{H}_0$ and a difficult interaction $\hat{W}$,
for example describing Coulomb repulsion between electrons.
The concept of [imaginary time](/know/concept/imaginary-time/)
exists to handle such difficult time-independent Hamiltonians
at nonzero temperatures. Therefore, we know that the
[Matsubara Green's function](/know/concept/matsubara-greens-function/)
$G$ can be written as follows, where $\mathcal{T}$ is the
[time-ordered product](/know/concept/time-ordered-product/),
and $\beta = 1 / (k_B T)$:
$$\begin{aligned}
G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a)
= - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_{s_b}(\vb{r}_b, \tau_b) \hat{\Psi}_{s_a}^\dagger(\vb{r}_a, \tau_a) \Big\}}}
{\hbar \expval{\hat{K}(\hbar \beta, 0)}}
\end{aligned}$$
Where we know that the time evolution operator $\hat{K}$
is as follows in the [interaction picture](/know/concept/interaction-picture/):
$$\begin{aligned}
\hat{K}(\tau_2, \tau_1)
&= \mathcal{T}\bigg\{ \exp\!\bigg( \!-\!\frac{1}{\hbar} \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg) \bigg\}
\\
&= \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n
\mathcal{T}\bigg\{ \bigg( \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg)^n \bigg\}
\end{aligned}$$
Where $\hat{W}$ is the two-body operator in the interaction picture.
We insert this into the full Green's function above,
and abbreviate
$G_{ba} \equiv G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a)$
and $\hat{\Psi}_a \equiv \hat{\Psi}_{s_a}(\vb{r}_a, \tau_a)$:
$$\begin{aligned}
G_{ba}
%&= - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}}}{\expval{\hat{K}(\hbar \beta, 0)}}
%\\
&= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta}
\expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}}
{\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta}
\expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}}
\end{aligned}$$
Next, we write out the interaction operator $\hat{W}$
in the [second quantization](/know/concept/second-quantization/),
assuming there is no spin-flipping,
and that $W(\vb{r}_1, \vb{r}_2) = W(\vb{r}_2, \vb{r}_1)$
(hence $1/2$ to avoid double-counting):
$$\begin{aligned}
\hat{W}(\tau_1)
&= \frac{1}{2} \sum_{s_1 s_2} \iint_{-\infty}^\infty \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_1)
W(\vb{r}_1, \vb{r}_2) \hat{\Psi}_{s_2}(\vb{r}_2, \tau_1) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\vb{r}_1} \dd{\vb{r}_2}
\end{aligned}$$
We integrate this over $\tau_1$ and over a dummy $\tau_2$.
Defining $W_{j'j} \equiv W(\vb{r}_j', \vb{r}_j) \: \delta(\tau_1 \!-\! \tau_2)$ we get:
$$\begin{aligned}
\int_0^{\hbar \beta} \hat{W}(\tau_1) \dd{\tau_1}
&= \frac{1}{2} \iint \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_2)
\: W_{1,2} \: \hat{\Psi}_{s_2}(\vb{r}_2, \tau_2) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\tau_2} \dd{\vb{r}_1} \dd{\vb{r}_2}
\\
&= \frac{1}{2} \iint \hat{\Psi}_1^\dagger \hat{\Psi}_2^\dagger W_{1,2} \hat{\Psi}_2 \hat{\Psi}_1 \dd{1} \dd{2}
\end{aligned}$$
Where we have further abbreviated $\int \dd{j} \equiv \sum_{s_j} \int \dd{\vb{r}_j} \int \dd{\tau_j}$.
The full $G_{ba}$ thus becomes:
$$\begin{aligned}
G_{ba}
&= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n+1}
\idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{num} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}}
{\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n}
\idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{den} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}}
\end{aligned}$$
Where we have realized that both the numerator and denominator
contain many-particle non-interacting Green's functions, defined as:
$$\begin{aligned}
G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n)
&= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n + 1}
\expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots
\hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}}
\\
G^0_\mathrm{den}(1'1 \cdots n'n; 1'1 \cdots n'n)
&= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n}
\expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots
\hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \Big\}}
\end{aligned}$$
By applying [Wick's theorem](/know/concept/wicks-theorem/),
we can rewrite these as a sum of products of single-particle Green's functions,
so for instance $G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n)$ becomes:
$$\begin{aligned}
G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n)
= \mathrm{det} \begin{bmatrix}
G^0_{ba} & G^0_{b1'} & G^0_{b1} & G^0_{b2'} & \cdots & G^0_{bn'} & G^0_{bn} \\
G^0_{1'a} & G^0_{1'1'} & G^0_{1'1} & G^0_{1'2'} & \cdots & G^0_{1'n'} & G^0_{1'n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
G^0_{n'a} & G^0_{n'1'} & G^0_{n'1} & G^0_{n'2'} & \cdots & G^0_{n'n'} & G^0_{n'n} \\
G^0_{na} & G^0_{n1'} & G^0_{n1} & G^0_{n2'} & \cdots & G^0_{nn'} & G^0_{nn}
\end{bmatrix}
\end{aligned}$$
And analogously for $G^0_\mathrm{den}$.
If we are studying bosons instead of fermions,
the above determinant would need to be replaced by a *permanent*.
We assume fermions from now on.
We thus have sums over all permutations $p$
of products of single-particle Green's function,
times $(-1)^p$ to account for swaps of fermionic operators:
$$\begin{aligned}
G_{ba}
&= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n + 1} G^0_{(p,m)} \Big) \dd{1}' \dd{1} \cdots \dd{n'} \dd{n}}
{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n} G^0_{(p,m)} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}}
\end{aligned}$$
These integrals over products of interactions and Green's functions
are the perfect place to apply [Feynman diagrams](/know/concept/feynman-diagram/).
Conveniently, it even turns out that the factor $(-1)^p$
is exactly equivalent to the rule that each diagram is multiplied by $(-1)^F$,
with $F$ the number of fermion loops.
The denominator thus turns into a sum of all possible diagrams for each total order $n$
(the order of a diagram is the number of interaction lines it contains).
The endpoints $a$ and $b$ do not appear here,
so we conclude that all those diagrams only have internal vertices;
we will therefore refer to them as **internal diagrams**.
And in the numerator, we sum over all diagrams of total order $n$
containing the external vertices $a$ and $b$.
Some of them are **connected**,
so all vertices (including $a$ and $b$) are in the same graph,
but most are **disconnected**.
Because disconnected diagrams have no shared lines or vertices to integrate over,
they can simply be factored into separate diagrams.
If it contains $a$ and $b$, we call it an **external diagram**,
and then clearly all disconnected parts must be internal diagrams
($a$ and $b$ are always connected,
since they are the only vertices with just one fermion line;
all internal vertices must have two).
We thus find:
$$\begin{aligned}
G_{ba}
&= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\bigg[ \sum_\mathrm{all\;ext}^{n} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m \!\le\! n}
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]}
{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
\end{aligned}$$
Where the total order refers to the sum of the orders of all disconnected diagrams.
Note that the external diagram does not directly depend on $n$.
We can therefore reorganize:
$$\begin{aligned}
G_{ba}
&= \frac{\displaystyle\sum_\mathrm{all\;ext}^{\infty} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
\bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]}
{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
\end{aligned}$$
Since both $n$ and $m$ start at zero,
and the sums include all possible diagrams,
we see that the second sum in the numerator does not actually depend on $m$:
$$\begin{aligned}
G_{ba}
&= \frac{\displaystyle\sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
\bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n} \bigg]}
{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
\binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
\\
&= \sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
\end{aligned}$$
In other words, all the disconnected diagrams simply cancel out,
and we are left with a sum over all possible fully connected diagrams
that contain $a$ and $b$. Let $G(b,a) = G_{ba}$:
A **reducible diagram** is a Feynman diagram
that can be cut in two valid diagrams
by removing just one fermion line,
while an **irreducible diagram** cannot be split like that.
At last, we define the **self-energy** $\Sigma(y,x)$
as the sum of all irreducible terms in $G(b,a)$,
after removing the two external lines from/to $a$ and $b$:
Despite its appearance, the self-energy has the semantics of a line,
so it has two endpoints over which to integrate if necessary.
By construction, by reattaching $G^0(x,a)$ and $G^0(b,y)$ to the self-energy,
we get all irreducible diagrams,
and by connecting multiple irreducible diagrams with single fermion lines,
we get all fully connected diagrams containing the endpoints $a$ and $b$.
In other words, the full $G(b,a)$ is constructed
by taking the unperturbed $G^0(b,a)$
and inserting one or more irreducible diagrams between $a$ and $b$.
We can equally well insert a single irreducible diagram
as a sequence of connected irreducible diagrams.
Thanks to this recursive structure,
you can convince youself that $G(b,a)$ obeys
a [Dyson equation](/know/concept/dyson-equation/) involving $\Sigma(y, x)$:
This makes sense: in the "normal" Dyson equation
we have a one-body perturbation instead of $\Sigma$,
while $\Sigma$ represents a two-body effect
as an infinite sum of one-body diagrams.
Interpreting this diagrammatic Dyson equation yields:
$$\begin{aligned}
\boxed{
G(b, a)
= G^0(b, a) + \iint G^0(b, y) \: \Sigma(y, x) \: G(x, a) \dd{x} \dd{y}
}
\end{aligned}$$
Keep in mind that $\int \dd{x} \equiv \sum_{s_x} \int \dd{\vb{r}_x} \int \dd{\tau_x}$.
In the special case of a system with continuous translational symmetry
and no spin dependence, this simplifies to:
$$\begin{aligned}
\boxed{
G_{s}(\tilde{\vb{k}})
= G_{s}^0(\tilde{\vb{k}}) + G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}}) \: G_{s}(\tilde{\vb{k}})
}
\end{aligned}$$
Where $\tilde{\vb{k}} \equiv (\vb{k}, i \omega_n)$,
with $\omega_n$ being a fermionic Matsubara frequency.
Note that conservation of spin, $\vb{k}$ and $\omega_n$,
together with the linear structure of the Dyson equation,
makes $\Sigma$ diagonal in all of those quantities.
Isolating for $G$:
$$\begin{aligned}
G_{s}(\tilde{\vb{k}})
= \frac{G_{s}^0(\tilde{\vb{k}})}{1 - G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}})}
= \frac{1}{1 / G_{s}^0(\tilde{\vb{k}}) - \Sigma_{s}(\tilde{\vb{k}})}
\end{aligned}$$
From [equation-of-motion theory](/know/concept/equation-of-motion-theory/),
we already know an expression for $G$ in diagonal $\vb{k}$-space:
$$\begin{aligned}
G_s^0(\vb{k}, i \omega_n)
= \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k}}
\quad \implies \quad
G_{s}(\vb{k}, i \omega_n)
= \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k} - \Sigma_{s}(\vb{k}, i \omega_n)}
\end{aligned}$$
The self-energy thus corrects the non-interacting energies for interactions.
It can therefore be regarded as the energy
a particle has due to changes it has caused in its environment.
Unfortunately, in practice, $\Sigma$ is rarely as simple as
in the translationally-invariant example above;
in fact, it does not even need to be Hermitian,
i.e. $\Sigma(y,x) \neq \Sigma^*(x,y)$,
in which case it resists the standard techniques for analysis.
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.