From a8d31faecc733fa4d63fde58ab98a5e9d11029c2 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 2 Apr 2023 16:57:12 +0200 Subject: Improve knowledge base --- source/know/concept/blochs-theorem/index.md | 46 ++++++++++------------------- 1 file changed, 16 insertions(+), 30 deletions(-) (limited to 'source/know/concept/blochs-theorem/index.md') diff --git a/source/know/concept/blochs-theorem/index.md b/source/know/concept/blochs-theorem/index.md index 6f445f1..d7fcf90 100644 --- a/source/know/concept/blochs-theorem/index.md +++ b/source/know/concept/blochs-theorem/index.md @@ -17,85 +17,72 @@ take the following form, where the function $$u(\vb{r})$$ is periodic on the same lattice, i.e. $$u(\vb{r}) = u(\vb{r} + \vb{a})$$: -$$ -\begin{aligned} +$$\begin{aligned} \boxed{ \psi(\vb{r}) = u(\vb{r}) e^{i \vb{k} \cdot \vb{r}} } -\end{aligned} -$$ +\end{aligned}$$ In other words, in a periodic potential, the solutions are simply plane waves with a periodic modulation, known as **Bloch functions** or **Bloch states**. -This is suprisingly easy to prove: +This is surprisingly easy to prove: if the Hamiltonian $$\hat{H}$$ is lattice-periodic, then both $$\psi(\vb{r})$$ and $$\psi(\vb{r} + \vb{a})$$ are eigenstates with the same energy: -$$ -\begin{aligned} +$$\begin{aligned} \hat{H} \psi(\vb{r}) = E \psi(\vb{r}) \qquad \hat{H} \psi(\vb{r} + \vb{a}) = E \psi(\vb{r} + \vb{a}) -\end{aligned} -$$ +\end{aligned}$$ Now define the unitary translation operator $$\hat{T}(\vb{a})$$ such that $$\psi(\vb{r} + \vb{a}) = \hat{T}(\vb{a}) \psi(\vb{r})$$. From the previous equation, we then know that: -$$ -\begin{aligned} +$$\begin{aligned} \hat{H} \hat{T}(\vb{a}) \psi(\vb{r}) = E \hat{T}(\vb{a}) \psi(\vb{r}) = \hat{T}(\vb{a}) \big(E \psi(\vb{r})\big) = \hat{T}(\vb{a}) \hat{H} \psi(\vb{r}) -\end{aligned} -$$ +\end{aligned}$$ In other words, if $$\hat{H}$$ is lattice-periodic, then it will commute with $$\hat{T}(\vb{a})$$, i.e. $$[\hat{H}, \hat{T}(\vb{a})] = 0$$. Consequently, $$\hat{H}$$ and $$\hat{T}(\vb{a})$$ must share eigenstates $$\psi(\vb{r})$$: -$$ -\begin{aligned} +$$\begin{aligned} \hat{H} \:\psi(\vb{r}) = E \:\psi(\vb{r}) \qquad \qquad \hat{T}(\vb{a}) \:\psi(\vb{r}) = \tau \:\psi(\vb{r}) -\end{aligned} -$$ +\end{aligned}$$ Since $$\hat{T}$$ is unitary, its eigenvalues $$\tau$$ must have the form $$e^{i \theta}$$, with $$\theta$$ real. Therefore a translation by $$\vb{a}$$ causes a phase shift, for some vector $$\vb{k}$$: -$$ -\begin{aligned} +$$\begin{aligned} \psi(\vb{r} + \vb{a}) = \hat{T}(\vb{a}) \:\psi(\vb{r}) = e^{i \theta} \:\psi(\vb{r}) = e^{i \vb{k} \cdot \vb{a}} \:\psi(\vb{r}) -\end{aligned} -$$ +\end{aligned}$$ Let us now define the following function, keeping our arbitrary choice of $$\vb{k}$$: -$$ -\begin{aligned} +$$\begin{aligned} u(\vb{r}) - = e^{- i \vb{k} \cdot \vb{r}} \:\psi(\vb{r}) -\end{aligned} -$$ + \equiv e^{- i \vb{k} \cdot \vb{r}} \:\psi(\vb{r}) +\end{aligned}$$ As it turns out, this function is guaranteed to be lattice-periodic for any $$\vb{k}$$: -$$ -\begin{aligned} +$$\begin{aligned} u(\vb{r} + \vb{a}) &= e^{- i \vb{k} \cdot (\vb{r} + \vb{a})} \:\psi(\vb{r} + \vb{a}) \\ @@ -104,8 +91,7 @@ $$ &= e^{- i \vb{k} \cdot \vb{r}} \:\psi(\vb{r}) \\ &= u(\vb{r}) -\end{aligned} -$$ +\end{aligned}$$ Then Bloch's theorem follows from isolating the definition of $$u(\vb{r})$$ for $$\psi(\vb{r})$$. -- cgit v1.2.3