From c4d597e8d695eb145755464cffbf88a68fd0c88a Mon Sep 17 00:00:00 2001
From: Prefetch
Date: Tue, 16 Apr 2024 17:08:00 +0200
Subject: Expand knowledge base

---
 source/know/concept/clausius-mossotti-relation/index.md | 6 ++++--
 1 file changed, 4 insertions(+), 2 deletions(-)

(limited to 'source/know/concept/clausius-mossotti-relation')

diff --git a/source/know/concept/clausius-mossotti-relation/index.md b/source/know/concept/clausius-mossotti-relation/index.md
index a0f4916..03bdcac 100644
--- a/source/know/concept/clausius-mossotti-relation/index.md
+++ b/source/know/concept/clausius-mossotti-relation/index.md
@@ -55,7 +55,8 @@ the dipole term will be dominant in that case, given by:
 
 $$\begin{aligned}
     V_i(\vb{r})
-    \approx \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2} \int \rho_i(\vb{r}') \: |\vb{r}'| \cos{\theta} \dd{\vb{r}'}
+    \approx \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2}
+    \int_{-\infty}^\infty \rho_i(\vb{r}') \: |\vb{r}'| \cos{\theta} \dd{\vb{r}'}
 \end{aligned}$$
 
 Where $$\theta$$ is the angle between $$\vb{r}$$ and $$\vb{r}'$$,
@@ -64,7 +65,8 @@ with the unit vector $$\vu{r}$$, normalized from $$\vb{r}$$:
 
 $$\begin{aligned}
     V_i(\vb{r})
-    = \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2} \: \vu{r} \cdot \!\!\int \vb{r}' \rho_i(\vb{r}') \dd{\vb{r}'}
+    = \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2}
+    \: \vu{r} \cdot \!\!\int_{-\infty}^\infty \vb{r}' \rho_i(\vb{r}') \dd{\vb{r}'}
 \end{aligned}$$
 
 The integral is a more general definition of the dipole moment $$\vb{p}_i$$.
-- 
cgit v1.2.3