From e2f6ff4487606f4052b9c912b9faa2c8d8f1ca10 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 18 Jun 2023 17:59:42 +0200 Subject: Improve knowledge base --- .../cylindrical-parabolic-coordinates/index.md | 296 --------------------- 1 file changed, 296 deletions(-) delete mode 100644 source/know/concept/cylindrical-parabolic-coordinates/index.md (limited to 'source/know/concept/cylindrical-parabolic-coordinates') diff --git a/source/know/concept/cylindrical-parabolic-coordinates/index.md b/source/know/concept/cylindrical-parabolic-coordinates/index.md deleted file mode 100644 index 58358dd..0000000 --- a/source/know/concept/cylindrical-parabolic-coordinates/index.md +++ /dev/null @@ -1,296 +0,0 @@ ---- -title: "Cylindrical parabolic coordinates" -sort_title: "Cylindrical parabolic coordinates" -date: 2021-03-04 -categories: -- Mathematics -- Physics -layout: "concept" ---- - -**Cylindrical parabolic coordinates** extend parabolic coordinates $$(\sigma, \tau)$$ to 3D, -by describing a point in space using the variables $$(\sigma, \tau, z)$$. -The $$z$$-axis is the same as in the Cartesian system, (hence the name *cylindrical*), -while the coordinate lines of $$\sigma$$ and $$\tau$$ are confocal parabolas. - -[Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ -and this system $$(\sigma, \tau, z)$$ are related by: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - x - &= \frac{1}{2} (\tau^2 - \sigma^2) - \\ - y - &= \sigma \tau - \\ - z - &= z - \end{aligned} - } -\end{aligned}$$ - -Conversely, a point given in $$(x, y, z)$$ can be converted -to $$(\sigma, \tau, z)$$ using these formulae: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \sigma - &= \sgn(x) \sqrt{\sqrt{x^2 + y^2} - x} - \\ - \tau - &= \sqrt{\sqrt{x^2 + y^2} + x} - \\ - z - &= z - \end{aligned} - } -\end{aligned}$$ - -Cylindrical parabolic coordinates form -an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), -whose **scale factors** $$h_\sigma$$, $$h_\tau$$ and $$h_z$$ we need. -To get those, we calculate the unnormalized local basis: - -$$\begin{aligned} - h_\sigma \vu{e}_\sigma - &= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma} - \\ - &= - \vu{e}_x \sigma + \vu{e}_y \tau - \\ - h_\tau \vu{e}_\tau - &= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau} - \\ - &= \vu{e}_x \tau + \vu{e}_y \sigma - \\ - h_\sigma \vu{e}_\sigma - &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} - \\ - &= \vu{e}_z -\end{aligned}$$ - -By normalizing the **local basis vectors** -$$\vu{e}_\sigma$$, $$\vu{e}_\tau$$ and $$\vu{e}_z$$, -we arrive at these expressions, -where we have defined the abbreviation $$\rho$$ for convenience: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - h_\sigma - &= \rho - \equiv \sqrt{\sigma^2 + \tau^2} - \\ - h_\tau - &= \rho - \equiv \sqrt{\sigma^2 + \tau^2} - \\ - h_z - &= 1 - \end{aligned} - } - \qquad\qquad - \boxed{ - \begin{aligned} - \vu{e}_\sigma - &= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho} - \\ - \vu{e}_\tau - &= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho} - \\ - \vu{e}_z - &= \vu{e}_z - \end{aligned} - } -\end{aligned}$$ - -Thanks to these scale factors, we can easily convert calculus from the Cartesian system -using the standard formulae for orthogonal curvilinear coordinates. - - - -## Differential elements - -For line integrals, -the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: - -$$\begin{aligned} - \boxed{ - \dd{\vb{\ell}} - = \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z} - } -\end{aligned}$$ - -For surface integrals, -the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: - -$$\begin{aligned} - \boxed{ - \dd{\vb{S}} - = \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau} - } -\end{aligned}$$ - -And for volume integrals, -the infinitesimal volume $$\dd{V}$$ takes the following form: - -$$\begin{aligned} - \boxed{ - \dd{V} - = \rho^2 \dd{\sigma} \dd{\tau} \dd{z} - } -\end{aligned}$$ - - - -## Common operations - -The basic vector operations (gradient, divergence, curl and Laplacian) are given by: - -$$\begin{aligned} - \boxed{ - \nabla f - = \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma} - + \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau} - + \vu{e}_z \pdv{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla \cdot \vb{V} - = \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3} - + \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3} - + \pdv{V_z}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \times \vb{V} - &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg) - \\ - &\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3} - - \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla^2 f - = \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z} - } -\end{aligned}$$ - - - -## Uncommon operations - -Uncommon operations include: -the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, -the gradient of a vector $$\nabla \vb{V}$$, -the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, -the Laplacian of a vector $$\nabla^2 \vb{V}$$, -and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla (\nabla \cdot \vb{V}) - &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau} - + \frac{1}{\rho} \mpdv{V_z}{\sigma}{z} - \\ - &\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau} - + \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg) - \\ - &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} - + \frac{1}{\rho} \mpdv{V_z}{\tau}{z} - \\ - &\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau} - - \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z} - + \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \vb{V} - &= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg) - + \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg) - + \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma} - \\ - &\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg) - + \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg) - + \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau} - \\ - &\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z} - + \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z} - + \vu{e}_z \vu{e}_z \pdv{V_z}{z} - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - (\vb{U} \cdot \nabla) \vb{V} - &= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z} - + \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg) - \\ - &\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z} - + \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla^2 \vb{V} - &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z} - + \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg) - \\ - &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z} - - \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \cdot \overline{\overline{\mathbf{T}}} - &= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z} - + \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3} - + \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg) - \\ - &+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z} - - \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3} - + \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg) - \\ - &+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z} - + \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg) - \end{aligned} - } -\end{aligned}$$ - - - -## References -1. M.L. Boas, - *Mathematical methods in the physical sciences*, 2nd edition, - Wiley. -- cgit v1.2.3