From e2f6ff4487606f4052b9c912b9faa2c8d8f1ca10 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 18 Jun 2023 17:59:42 +0200 Subject: Improve knowledge base --- .../concept/cylindrical-polar-coordinates/index.md | 296 --------------------- 1 file changed, 296 deletions(-) delete mode 100644 source/know/concept/cylindrical-polar-coordinates/index.md (limited to 'source/know/concept/cylindrical-polar-coordinates') diff --git a/source/know/concept/cylindrical-polar-coordinates/index.md b/source/know/concept/cylindrical-polar-coordinates/index.md deleted file mode 100644 index cf227a6..0000000 --- a/source/know/concept/cylindrical-polar-coordinates/index.md +++ /dev/null @@ -1,296 +0,0 @@ ---- -title: "Cylindrical polar coordinates" -sort_title: "Cylindrical polar coordinates" -date: 2021-07-26 -categories: -- Mathematics -- Physics -layout: "concept" ---- - -**Cylindrical polar coordinates** extend polar coordinates $$(r, \varphi)$$ to 3D, -by describing the location of a point in space -using the variables $$(r, \varphi, z)$$. -The $$z$$-axis is unchanged from the Cartesian system, -hence the name *cylindrical*. - -[Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ -and the cylindrical system $$(r, \varphi, z)$$ are related by: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - x - &= r \cos{\varphi} - \\ - y - &= r \sin{\varphi} - \\ - z - &= z - \end{aligned} - } -\end{aligned}$$ - -Conversely, a point given in $$(x, y, z)$$ -can be converted to $$(r, \varphi, z)$$ using these formulae, -where $$\mathtt{atan2}$$ is the 2-argument arctangent, -which is needed to handle the signs correctly: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - r - &= \sqrt{x^2 + y^2} - \\ - \varphi - &= \mathtt{atan2}(y, x) - \\ - z - &= z - \end{aligned} - } -\end{aligned}$$ - -Cylindrical polar coordinates form -an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), -whose **scale factors** $$h_r$$, $$h_\varphi$$ and $$h_z$$ we need. -To get those, we calculate the unnormalized local basis: - -$$\begin{aligned} - h_r \vu{e}_r - &= \vu{e}_x \pdv{x}{r} + \vu{e}_y \pdv{y}{r} + \vu{e}_z \pdv{z}{r} - \\ - &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} - \\ - h_\varphi \vu{e}_\varphi - &= \vu{e}_x \pdv{x}{\varphi} + \vu{e}_y \pdv{y}{\varphi} + \vu{e}_z \pdv{z}{\varphi} - \\ - &= - \vu{e}_x \: r \sin{\varphi} + \vu{e}_y \: r \cos{\varphi} - \\ - h_z \vu{e}_z - &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} - \\ - &= \vu{e}_z -\end{aligned}$$ - -By normalizing the **local basis vectors** -$$\vu{e}_r$$, $$\vu{e}_\varphi$$ and $$\vu{e}_z$$, -we arrive at these expressions: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - h_r - &= 1 - \\ - h_\varphi - &= r - \\ - h_z - &= 1 - \end{aligned} - } - \qquad\qquad - \boxed{ - \begin{aligned} - \vu{e}_r - &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} - \\ - \vu{e}_\varphi - &= - \vu{e}_x \sin{\varphi} + \vu{e}_y \cos{\varphi} - \\ - \vu{e}_z - &= \vu{e}_z - \end{aligned} - } -\end{aligned}$$ - -Thanks to these scale factors, we can easily convert calculus from the Cartesian system -using the standard formulae for orthogonal curvilinear coordinates. - - - -## Differential elements - -For line integrals, -the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: - -$$\begin{aligned} - \boxed{ - \dd{\vb{\ell}} - = \vu{e}_r \dd{r} - + \: \vu{e}_\varphi \: r \dd{\varphi} - + \: \vu{e}_z \dd{z} - } -\end{aligned}$$ - -For surface integrals, -the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: - -$$\begin{aligned} - \boxed{ - \dd{\vb{S}} - = \vu{e}_r \: r \dd{\varphi} \dd{z} - + \: \vu{e}_\varphi \dd{r} \dd{z} - + \: \vu{e}_z \: r \dd{r} \dd{\varphi} - } -\end{aligned}$$ - -And for volume integrals, -the infinitesimal volume $$\dd{V}$$ takes the following form: - -$$\begin{aligned} - \boxed{ - \dd{V} - = r \dd{r} \dd{\varphi} \dd{z} - } -\end{aligned}$$ - - - -## Common operations - -The basic vector operations (gradient, divergence, curl and Laplacian) are given by: - -$$\begin{aligned} - \boxed{ - \nabla f - = \vu{e}_r \pdv{f}{r} - + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi} - + \mathbf{e}_z \pdv{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla \cdot \vb{V} - = \pdv{V_r}{r} + \frac{V_r}{r} - + \frac{1}{r} \pdv{V_\varphi}{\varphi} - + \pdv{V_z}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \times \vb{V} - &= \quad \vu{e}_r \bigg( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \bigg) - \\ - &\quad\: + \vu{e}_\varphi \bigg( \pdv{V_r}{z} - \pdv{V_z}{r} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \pdv{V_\varphi}{r} + \frac{V_\varphi}{r} - \frac{1}{r} \pdv{V_r}{\varphi} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla^2 f - = \pdvn{2}{f}{r} + \frac{1}{r} \pdv{f}{r} - + \frac{1}{r^2} \pdvn{2}{f}{\varphi} - + \pdvn{2}{f}{z} - } -\end{aligned}$$ - - - -## Uncommon operations - -Uncommon operations include: -the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, -the gradient of a vector $$\nabla \vb{V}$$, -the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, -the Laplacian of a vector $$\nabla^2 \vb{V}$$, -and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla (\nabla \cdot \vb{V}) - &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\varphi}{r}{\varphi} + \mpdv{V_z}{r}{z} - + \frac{1}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) - \\ - &\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} - + \frac{1}{r} \mpdv{V_z}{\varphi}{z} + \frac{1}{r^2} \pdv{V_r}{\varphi} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \mpdv{V_r}{z}{r} + \frac{1}{r} \mpdv{V_\varphi}{z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_r}{z} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \vb{V} - &= \quad \vu{e}_r \vu{e}_r \pdv{V_r}{r} - + \vu{e}_r \vu{e}_\varphi \pdv{V_\varphi}{r} - + \vu{e}_r \vu{e}_z \pdv{V_z}{r} - \\ - &\quad\: + \vu{e}_\varphi \vu{e}_r \bigg( \frac{1}{r} \pdv{V_r}{\varphi} - \frac{V_\varphi}{r} \bigg) - + \vu{e}_\varphi \vu{e}_\varphi \bigg( \frac{1}{r} \pdv{V_\varphi}{\varphi} + \frac{V_r}{r} \bigg) - + \vu{e}_\varphi \vu{e}_z \frac{1}{r} \pdv{V_z}{\varphi} - \\ - &\quad\: + \vu{e}_z \vu{e}_r \pdv{V_r}{z} - + \vu{e}_z \vu{e}_\varphi \pdv{V_\varphi}{z} - + \vu{e}_z \vu{e}_z \pdv{V_z}{z} - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - (\vb{U} \cdot \nabla) \vb{V} - &= \quad \vu{e}_r \bigg( U_r \pdv{V_r}{r} + \frac{U_\varphi}{r} \pdv{V_r}{\varphi} + U_z \pdv{V_r}{z} - - \frac{U_\varphi V_\varphi}{r} \bigg) - \\ - &\quad\: + \vu{e}_\varphi \bigg( U_r \pdv{V_\varphi}{r} + \frac{U_\varphi}{r} \pdv{V_\varphi}{\varphi} + U_z \pdv{V_\varphi}{z} - + \frac{U_\varphi V_r}{r} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( U_r \pdv{V_z}{r} + \frac{U_\varphi}{r} \pdv{V_z}{\varphi} + U_z \pdv{V_z}{z} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla^2 \vb{V} - &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\varphi} + \pdvn{2}{V_r}{z} - + \frac{1}{r} \pdv{V_r}{r} - \frac{2}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) - \\ - &\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \pdvn{2}{V_\varphi}{z} - + \frac{2}{r^2} \pdv{V_r}{\varphi} + \frac{1}{r} \pdv{V_\varphi}{r} - \frac{V_\varphi}{r^2} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{r} + \frac{1}{r^2} \pdvn{2}{V_z}{\varphi} - + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_z}{r} \bigg) - \end{aligned} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \cdot \overline{\overline{\mathbf{T}}} - &= \quad \vu{e}_r \bigg( \pdv{T_{rr}}{r} + \frac{1}{r} \pdv{T_{\varphi r}}{\varphi} + \pdv{T_{zr}}{z} - + \frac{T_{rr}}{r} - \frac{T_{\varphi \varphi}}{r} \bigg) - \\ - &\quad\: + \vu{e}_\varphi \bigg( \pdv{T_{r \varphi}}{r} + \frac{1}{r} \pdv{T_{\varphi \varphi}}{\varphi} + \pdv{T_{z \varphi}}{z} - + \frac{T_{r \varphi}}{r} + \frac{T_{\varphi r}}{r} \bigg) - \\ - &\quad\: + \vu{e}_z \bigg( \pdv{T_{rz}}{r} + \frac{1}{r} \pdv{T_{\varphi z}}{\varphi} + \pdv{T_{zz}}{z} - + \frac{T_{rz}}{r} \bigg) - \end{aligned} - } -\end{aligned}$$ - - - -## References -1. M.L. Boas, - *Mathematical methods in the physical sciences*, 2nd edition, - Wiley. -2. B. Lautrup, - *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, - CRC Press. -- cgit v1.2.3