From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- source/know/concept/dielectric-function/index.md | 138 +++++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 source/know/concept/dielectric-function/index.md (limited to 'source/know/concept/dielectric-function') diff --git a/source/know/concept/dielectric-function/index.md b/source/know/concept/dielectric-function/index.md new file mode 100644 index 0000000..7bee0cf --- /dev/null +++ b/source/know/concept/dielectric-function/index.md @@ -0,0 +1,138 @@ +--- +title: "Dielectric function" +date: 2022-01-24 +categories: +- Physics +- Electromagnetism +- Quantum mechanics +layout: "concept" +--- + +The **dielectric function** or **relative permittivity** $\varepsilon_r$ +is a measure of how strongly a given medium counteracts +[electric fields](/know/concept/electric-field/) compared to a vacuum. +Let $\vb{D}$ be the applied external field, +and $\vb{E}$ the effective field inside the material: + +$$\begin{aligned} + \boxed{ + \vb{D} = \varepsilon_0 \varepsilon_r \vb{E} + } +\end{aligned}$$ + +If $\varepsilon_r$ is large, then $\vb{D}$ is strongly suppressed, +because the material's electrons and nuclei move to create an opposing field. +In order for $\varepsilon_r$ to be well defined, we only consider linear media, +where the induced polarization $\vb{P}$ is proportional to $\vb{E}$. + +We would like to find an alternative definition of $\varepsilon_r$. +Consider that the usual electric fields $\vb{E}$, $\vb{D}$, and $\vb{P}$ +can each be written as the gradient of an electrostatic potential like so, +where $\Phi_\mathrm{tot}$, $\Phi_\mathrm{ext}$ and $\Phi_\mathrm{ind}$ +are the total, external and induced potentials, respectively: + +$$\begin{aligned} + \vb{E} + = -\nabla \Phi_\mathrm{tot} + \qquad \qquad + \vb{D} + = - \varepsilon_0 \nabla \Phi_\mathrm{ext} + \qquad \qquad + \vb{P} + = \varepsilon_0 \nabla \Phi_\mathrm{ind} +\end{aligned}$$ + +Such that $\Phi_\mathrm{tot} = \Phi_\mathrm{ext} + \Phi_\mathrm{ind}$. +Inserting this into $\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}$ +then suggests defining: + +$$\begin{aligned} + \boxed{ + \varepsilon_r + \equiv \frac{\Phi_\mathrm{ext}}{\Phi_\mathrm{tot}} + } +\end{aligned}$$ + + +## From induced charge density + +A common way to calculate $\varepsilon_r$ is from +the induced charge density $\rho_\mathrm{ind}$, +i.e. the offset caused by the material's particles responding to the field. +We start from [Gauss' law](/know/concept/maxwells-equations/) for $\vb{P}$: + +$$\begin{aligned} + \nabla \cdot \vb{P} + = \varepsilon_0 \nabla^2 \Phi_\mathrm{ind}(\vb{r}) + = - \rho_\mathrm{ind}(\vb{r}) +\end{aligned}$$ + +This is Poisson's equation, which has the following well-known +[Fourier transform](/know/concept/fourier-transform/): + +$$\begin{aligned} + \Phi_\mathrm{ind}(\vb{q}) + = \frac{\rho_\mathrm{ind}(\vb{q})}{\varepsilon_0 |\vb{q}|^2} + = V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q}) +\end{aligned}$$ + +Where $V(\vb{q})$ represents Coulomb interactions, +and $V(0) = 0$ to ensure overall neutrality: + +$$\begin{aligned} + V(\vb{q}) + = \frac{1}{\varepsilon_0 |\vb{q}|^2} + \qquad \implies \qquad + V(\vb{r} - \vb{r}') + = \frac{1}{4 \pi \varepsilon_0 |\vb{r} - \vb{r}'|} +\end{aligned}$$ + +The [convolution theorem](/know/concept/convolution-theorem/) +then gives us the solution $\Phi_\mathrm{ind}$ in the $\vb{r}$-domain: + +$$\begin{aligned} + \Phi_\mathrm{ind}(\vb{r}) + = (V * \rho_\mathrm{ind})(\vb{r}) + = \int_{-\infty}^\infty V(\vb{r} - \vb{r}') \: \rho_\mathrm{ind}(\vb{r}') \dd{\vb{r}'} +\end{aligned}$$ + +To proceed, we need to find an expression for $\rho_\mathrm{ind}$ +that is proportional to $\Phi_\mathrm{tot}$ or $\Phi_\mathrm{ext}$, +or some linear combination thereof. +Such an expression must exist for a linear material. + +Suppose we can show that $\rho_\mathrm{ind} = C_\mathrm{ext} \Phi_\mathrm{ext}$, +for some $C_\mathrm{ext}$, which may depend on $\vb{q}$. Then: + +$$\begin{aligned} + \Phi_\mathrm{tot} + = (1 + C_\mathrm{ext} V) \Phi_\mathrm{ext} + \quad \implies \quad + \boxed{ + \varepsilon_r(\vb{q}) + = \frac{1}{1 + C_\mathrm{ext}(\vb{q}) V(\vb{q})} + } +\end{aligned}$$ + +Similarly, suppose we can show that $\rho_\mathrm{ind} = C_\mathrm{tot} \Phi_\mathrm{tot}$, +for some quantity $C_\mathrm{tot}$, then: + +$$\begin{aligned} + \Phi_\mathrm{ext} + = (1 - C_\mathrm{tot} V) \Phi_\mathrm{tot} + \quad \implies \quad + \boxed{ + \varepsilon_r(\vb{q}) + = 1 - C_\mathrm{tot}(\vb{q}) V(\vb{q}) + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. +2. M. Fox, + *Optical properties of solids*, 2nd edition, + Oxford. -- cgit v1.2.3