From 6e70f28ccbd5afc1506f71f013278a9d157ef03a Mon Sep 17 00:00:00 2001
From: Prefetch
Date: Thu, 27 Oct 2022 20:40:09 +0200
Subject: Optimize last images, add proof template, improve CSS
---
source/know/concept/dirac-delta-function/index.md | 20 ++++++--------------
1 file changed, 6 insertions(+), 14 deletions(-)
(limited to 'source/know/concept/dirac-delta-function')
diff --git a/source/know/concept/dirac-delta-function/index.md b/source/know/concept/dirac-delta-function/index.md
index 518eba1..0185b78 100644
--- a/source/know/concept/dirac-delta-function/index.md
+++ b/source/know/concept/dirac-delta-function/index.md
@@ -65,11 +65,8 @@ $$\begin{aligned}
}
\end{aligned}$$
-
-
-
-
-
+
+{% include proof/start.html id="proof-scale" -%}
Because it is symmetric, $$\delta(s x) = \delta(|s| x)$$.
Then by substituting $$\sigma = |s| x$$:
@@ -77,9 +74,8 @@ $$\begin{aligned}
\int \delta(|s| x) \dd{x}
&= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|}
\end{aligned}$$
+{% include proof/end.html id="proof-scale" %}
-
-
An even more impressive property is the behaviour of the derivative of $$\delta(x)$$:
@@ -89,11 +85,8 @@ $$\begin{aligned}
}
\end{aligned}$$
-
-
-
-
-
+
+{% include proof/start.html id="proof-dv1" -%}
Note which variable is used for the
differentiation, and that $$\delta'(x - \xi) = - \delta'(\xi - x)$$:
@@ -102,9 +95,8 @@ $$\begin{aligned}
&= \dv{}{x}\int f(\xi) \: \delta(x - \xi) \dd{x}
= f'(x)
\end{aligned}$$
+{% include proof/end.html id="proof-dv1" %}
-
-
This property also generalizes nicely for the higher-order derivatives:
--
cgit v1.2.3