From aeacfca5aea5df7c107cf0c12e72ab5d496c96e1 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Tue, 3 Jan 2023 19:48:17 +0100 Subject: More improvements to knowledge base --- source/know/concept/einstein-coefficients/index.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'source/know/concept/einstein-coefficients') diff --git a/source/know/concept/einstein-coefficients/index.md b/source/know/concept/einstein-coefficients/index.md index 179d866..ad75ce5 100644 --- a/source/know/concept/einstein-coefficients/index.md +++ b/source/know/concept/einstein-coefficients/index.md @@ -159,7 +159,8 @@ $$\begin{aligned} This form of $$\hat{H}_1$$ is a well-known case for [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), -which tells us that the transition probability from $$\Ket{a}$$ to $$\Ket{b}$$ is: +which tells us that the transition probability +from $$\ket{a}$$ to $$\ket{b}$$ is (to first order): $$\begin{aligned} P_{ab} @@ -167,7 +168,7 @@ $$\begin{aligned} \end{aligned}$$ If the nucleus is at $$z = 0$$, -then generally $$\Ket{1}$$ and $$\Ket{2}$$ will be even or odd functions of $$z$$, +then generally $$\ket{1}$$ and $$\ket{2}$$ will be even or odd functions of $$z$$, meaning that $$\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$$ (see also [Laporte's selection rule](/know/concept/selection-rules/)), leading to: -- cgit v1.2.3