From 16555851b6514a736c5c9d8e73de7da7fc9b6288 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 20 Oct 2022 18:25:31 +0200 Subject: Migrate from 'jekyll-katex' to 'kramdown-math-sskatex' --- .../concept/electric-dipole-approximation/index.md | 48 +++++++++++----------- 1 file changed, 24 insertions(+), 24 deletions(-) (limited to 'source/know/concept/electric-dipole-approximation') diff --git a/source/know/concept/electric-dipole-approximation/index.md b/source/know/concept/electric-dipole-approximation/index.md index 66501e2..7c710ec 100644 --- a/source/know/concept/electric-dipole-approximation/index.md +++ b/source/know/concept/electric-dipole-approximation/index.md @@ -22,11 +22,11 @@ $$\begin{aligned} &= \frac{\vu{P}{}^2}{2 m} - \frac{q}{2 m} (\vb{A} \cdot \vu{P} + \vu{P} \cdot \vb{A}) + \frac{q^2 \vb{A}^2}{2m} + q \varphi \end{aligned}$$ -With charge $q = - e$, -canonical momentum operator $\vu{P} = - i \hbar \nabla$, -and magnetic vector potential $\vb{A}(\vb{x}, t)$. -We reduce this by fixing the Coulomb gauge $\nabla \cdot \vb{A} = 0$, -so that $\vb{A} \cdot \vu{P} = \vu{P} \cdot \vb{A}$: +With charge $$q = - e$$, +canonical momentum operator $$\vu{P} = - i \hbar \nabla$$, +and magnetic vector potential $$\vb{A}(\vb{x}, t)$$. +We reduce this by fixing the Coulomb gauge $$\nabla \cdot \vb{A} = 0$$, +so that $$\vb{A} \cdot \vu{P} = \vu{P} \cdot \vb{A}$$: $$\begin{aligned} \comm{\vb{A}}{\vu{P}} \psi @@ -36,9 +36,9 @@ $$\begin{aligned} = 0 \end{aligned}$$ -Where $\psi$ is an arbitrary test function. -Assuming $\vb{A}$ is so small that $\vb{A}{}^2$ is negligible, we split $\hat{H}$ as follows, -where $\hat{H}_1$ can be regarded as a perturbation to $\hat{H}_0$: +Where $$\psi$$ is an arbitrary test function. +Assuming $$\vb{A}$$ is so small that $$\vb{A}{}^2$$ is negligible, we split $$\hat{H}$$ as follows, +where $$\hat{H}_1$$ can be regarded as a perturbation to $$\hat{H}_0$$: $$\begin{aligned} \hat{H} @@ -51,7 +51,7 @@ $$\begin{aligned} \equiv - \frac{q}{m} \vu{P} \cdot \vb{A} \end{aligned}$$ -In an electromagnetic wave, $\vb{A}$ is oscillating sinusoidally in time and space: +In an electromagnetic wave, $$\vb{A}$$ is oscillating sinusoidally in time and space: $$\begin{aligned} \vb{A}(\vb{x}, t) = \vb{A}_0 \sin(\vb{k} \cdot \vb{x} - \omega t) @@ -64,7 +64,7 @@ $$\begin{aligned} \vb{A}(\vb{x}, t) = - i \vb{A}_0 \exp(i \vb{k} \cdot \vb{x} - i \omega t) \end{aligned}$$ -The corresponding perturbative [electric field](/know/concept/electric-field/) $\vb{E}$ is then given by: +The corresponding perturbative [electric field](/know/concept/electric-field/) $$\vb{E}$$ is then given by: $$\begin{aligned} \vb{E}(\vb{x}, t) @@ -72,11 +72,11 @@ $$\begin{aligned} = \vb{E}_0 \exp(i \vb{k} \cdot \vb{x} - i \omega t) \end{aligned}$$ -Where $\vb{E}_0 = \omega \vb{A}_0$. +Where $$\vb{E}_0 = \omega \vb{A}_0$$. Let us restrict ourselves to visible light, -whose wavelength $2 \pi / |\vb{k}| \sim 10^{-6} \:\mathrm{m}$. -Meanwhile, an atomic orbital is several Bohr $\sim 10^{-10} \:\mathrm{m}$, -so $\vb{k} \cdot \vb{x}$ is negligible: +whose wavelength $$2 \pi / |\vb{k}| \sim 10^{-6} \:\mathrm{m}$$. +Meanwhile, an atomic orbital is several Bohr $$\sim 10^{-10} \:\mathrm{m}$$, +so $$\vb{k} \cdot \vb{x}$$ is negligible: $$\begin{aligned} \boxed{ @@ -86,15 +86,15 @@ $$\begin{aligned} \end{aligned}$$ This is the **electric dipole approximation**: -we ignore all spatial variation of $\vb{E}$, +we ignore all spatial variation of $$\vb{E}$$, and only consider its temporal oscillation. Also, since we have not used the word "photon", we are implicitly treating the radiation classically, and the electron quantum-mechanically. -Next, we want to rewrite $\hat{H}_1$ -to use the electric field $\vb{E}$ instead of the potential $\vb{A}$. -To do so, we use that $\vu{P} = m \: \idv{\vu{x}}{t}$ +Next, we want to rewrite $$\hat{H}_1$$ +to use the electric field $$\vb{E}$$ instead of the potential $$\vb{A}$$. +To do so, we use that $$\vu{P} = m \: \idv{\vu{x}}{t}$$ and evaluate this in the [interaction picture](/know/concept/interaction-picture/): $$\begin{aligned} @@ -105,7 +105,7 @@ $$\begin{aligned} \end{aligned}$$ Taking the off-diagonal inner product with -the two-level system's states $\Ket{1}$ and $\Ket{2}$ gives: +the two-level system's states $$\Ket{1}$$ and $$\Ket{2}$$ gives: $$\begin{aligned} \matrixel{2}{\vu{P}}{1} @@ -113,9 +113,9 @@ $$\begin{aligned} = m i \omega_0 \matrixel{2}{\vu{x}}{1} \end{aligned}$$ -Therefore, $\vu{P} / m = i \omega_0 \vu{x}$, -where $\omega_0 \equiv (E_2 \!-\! E_1) / \hbar$ is the resonance of the energy gap, -close to which we assume that $\vb{A}$ and $\vb{E}$ are oscillating, i.e. $\omega \approx \omega_0$. +Therefore, $$\vu{P} / m = i \omega_0 \vu{x}$$, +where $$\omega_0 \equiv (E_2 \!-\! E_1) / \hbar$$ is the resonance of the energy gap, +close to which we assume that $$\vb{A}$$ and $$\vb{E}$$ are oscillating, i.e. $$\omega \approx \omega_0$$. We thus get: $$\begin{aligned} @@ -127,7 +127,7 @@ $$\begin{aligned} = - \vu{d} \cdot \vb{E}_0 \exp(- i \omega t) \end{aligned}$$ -Where $\vu{d} \equiv q \vu{x} = - e \vu{x}$ is +Where $$\vu{d} \equiv q \vu{x} = - e \vu{x}$$ is the **transition dipole moment operator** of the electron, hence the name **electric dipole approximation**. Finally, we take the real part, yielding: @@ -141,7 +141,7 @@ $$\begin{aligned} \end{aligned}$$ If this approximation is too rough, -$\vb{E}$ can always be Taylor-expanded in $(i \vb{k} \cdot \vb{x})$: +$$\vb{E}$$ can always be Taylor-expanded in $$(i \vb{k} \cdot \vb{x})$$: $$\begin{aligned} \vb{E}(\vb{x}, t) -- cgit v1.2.3