From 6e70f28ccbd5afc1506f71f013278a9d157ef03a Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 27 Oct 2022 20:40:09 +0200 Subject: Optimize last images, add proof template, improve CSS --- source/know/concept/greens-functions/index.md | 22 ++++++++-------------- 1 file changed, 8 insertions(+), 14 deletions(-) (limited to 'source/know/concept/greens-functions') diff --git a/source/know/concept/greens-functions/index.md b/source/know/concept/greens-functions/index.md index ddba2cd..eda5671 100644 --- a/source/know/concept/greens-functions/index.md +++ b/source/know/concept/greens-functions/index.md @@ -21,6 +21,7 @@ but in general they are not the same, except in a special case, see below. + ## Single-particle functions If the two operators are single-particle creation/annihilation operators, @@ -146,11 +147,8 @@ $$\begin{gathered} G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t') \end{gathered}$$ -
- - - -
+{% include proof/end.html id="proof-time-delta" %} If the Hamiltonian is both time-independent and non-interacting, then the time-dependence of $$\hat{c}_\nu$$ @@ -214,6 +211,7 @@ $$\begin{aligned} \end{aligned}$$ + ## As fundamental solutions In the absence of interactions, @@ -237,11 +235,8 @@ $$\begin{aligned} = \frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r}) \end{aligned}$$ -
- - - -
After substituting this into the equation of motion, we recognize $$G^R(\vb{r}, t; \vb{r}', t')$$ itself: -- cgit v1.2.3