From b8f17e01d64b15935053c25e94d816ca01859152 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sun, 20 Oct 2024 16:25:03 +0200 Subject: Improve knowledge base --- source/know/concept/interaction-picture/index.md | 46 ++++++++++++------------ 1 file changed, 24 insertions(+), 22 deletions(-) (limited to 'source/know/concept/interaction-picture') diff --git a/source/know/concept/interaction-picture/index.md b/source/know/concept/interaction-picture/index.md index 8428bf3..a3bb260 100644 --- a/source/know/concept/interaction-picture/index.md +++ b/source/know/concept/interaction-picture/index.md @@ -39,14 +39,14 @@ Basically, any way of splitting $$\hat{H}_S$$ is valid as long as $$\hat{H}_{0, S}$$ is time-independent, but only a few ways are useful. -We now define the unitary conversion operator $$\hat{U}(t)$$ as shown below. -Note its similarity to the [time-evolution operator](/know/concept/time-evolution-operator/) -$$\hat{K}_S(t)$$, but with the opposite sign in the exponent: +We now define the unitary conversion operator $$\hat{U}_0(t)$$ as shown below. +Note its similarity to the +[time-evolution operator](/know/concept/time-evolution-operator/) $$\hat{K}_S(t)$$: $$\begin{aligned} \boxed{ - \hat{U}(t) - \equiv \exp\!\bigg( \frac{i}{\hbar} \hat{H}_{0,S} t \bigg) + \hat{U}_0(t) + \equiv \exp\!\bigg( \!-\! \frac{i}{\hbar} \hat{H}_{0,S} t \bigg) } \end{aligned}$$ @@ -56,17 +56,17 @@ and operators $$\hat{L}_I(t)$$ are then defined as follows: $$\begin{aligned} \boxed{ \Ket{\psi_I(t)} - \equiv \hat{U}(t) \Ket{\psi_S(t)} + \equiv \hat{U}_0^\dagger(t) \Ket{\psi_S(t)} } \qquad\qquad \boxed{ \hat{L}_I(t) - \equiv \hat{U}(t) \: \hat{L}_S(t) \: \hat{U}{}^\dagger(t) + \equiv \hat{U}_0^\dagger(t) \: \hat{L}_S(t) \: \hat{U}{}_0(t) } \end{aligned}$$ Because $$\hat{H}_{0, S}$$ is time-independent, -it commutes with $$\hat{U}(t)$$, +it commutes with $$\hat{U}_0$$, so conveniently $$\hat{H}_{0, I} = \hat{H}_{0, S}$$. @@ -78,25 +78,25 @@ we differentiate it and multiply by $$i \hbar$$: $$\begin{aligned} i \hbar \dv{}{t} \Ket{\psi_I} - &= i \hbar \dv{\hat{U}}{t} \Ket{\psi_S} + \hat{U} \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg) + &= i \hbar \dv{\hat{U}_0^\dagger}{t} \Ket{\psi_S} + \hat{U}_0^\dagger \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg) \end{aligned}$$ -We insert the definition of $$\hat{U}$$ in the first term +We insert the definition of $$\hat{U}_0$$ in the first term and the Schrödinger equation into the second, -and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}} = 0$$ +and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}_0} = 0$$ thanks to the time-independence of $$\hat{H}_{0, S}$$: $$\begin{aligned} i \hbar \dv{}{t} \Ket{\psi_I} - &= - \hat{H}_{0,S} \hat{U} \Ket{\psi_S} + \hat{U} \hat{H}_S \Ket{\psi_S} + &= - \hat{H}_{0,S} \hat{U}_0^\dagger \Ket{\psi_S} + \hat{U}_0^\dagger \hat{H}_S \Ket{\psi_S} \\ - &= \hat{U} \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S} + &= \hat{U}_0^\dagger \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S} \\ - &= \hat{U} \big( \hat{H}_{1,S} \big) \hat{U}{}^\dagger \hat{U} \Ket{\psi_S} + &= \hat{U}_0^\dagger \hat{H}_{1,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \Ket{\psi_S} \end{aligned}$$ Which leads to an analogue of the Schrödinger equation, -with $$\hat{H}_{1,I} = \hat{U} \hat{H}_{1,S} \hat{U}{}^\dagger$$: +with $$\hat{H}_{1,I} = \hat{U}_0^\dagger \hat{H}_{1,S} \hat{U}_0$$: $$\begin{aligned} \boxed{ @@ -110,11 +110,11 @@ in order to describe its evolution in time: $$\begin{aligned} \dv{\hat{L}_I}{t} - &= \dv{\hat{U}}{t} \hat{L}_S \hat{U}{}^\dagger + \hat{U} \hat{L}_S \dv{\hat{U}{}^\dagger}{t} - + \hat{U} \dv{\hat{L}_S}{t} \hat{U}{}^\dagger + &= \dv{\hat{U}_0^\dagger}{t} \hat{L}_S \hat{U}_0 + \hat{U}_0^\dagger \hat{L}_S \dv{\hat{U}_0}{t} + + \hat{U}_0^\dagger \dv{\hat{L}_S}{t} \hat{U}_0 \\ - &= \frac{i}{\hbar} \hat{U} \hat{H}_{0,S} \big( \hat{U}{}^\dagger \hat{U} \big) \hat{L}_S \hat{U}{}^\dagger - - \frac{i}{\hbar} \hat{U} \hat{L}_S \big( \hat{U}{}^\dagger \hat{U} \big) \hat{H}_{0,S} \hat{U}{}^\dagger + &= \frac{i}{\hbar} \hat{U}_0^\dagger \hat{H}_{0,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{L}_S \hat{U}_0 + - \frac{i}{\hbar} \hat{U}_0^\dagger \hat{L}_S \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{H}_{0,S} \hat{U}_0 + \bigg( \dv{\hat{L}_S}{t} \bigg)_I \\ &= \frac{i}{\hbar} \hat{H}_{0,I} \hat{L}_I @@ -144,13 +144,15 @@ can be solved in isolation in a kind of Schrödinger picture. What about the time evolution operator $$\hat{K}_S(t)$$? Its interaction version $$\hat{K}_I(t)$$ is unsurprisingly obtained by the standard transform -$$\hat{K}_I = \hat{U} \hat{K}_S \hat{U}^\dagger$$: +$$\hat{K}_I = \hat{U}_0^\dagger \hat{K}_S \hat{U}_0$$: $$\begin{aligned} \Ket{\psi_I(t)} - &= \hat{U}(t) \Ket{\psi_S(t)} + &= \hat{U}_0^\dagger(t) \Ket{\psi_S(t)} \\ - &= \hat{U}(t) \: \hat{K}_S(t) \: \hat{U}^\dagger(t) \Ket{\psi_I(0)} + &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \Ket{\psi_S(0)} + \\ + &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \: \hat{U}_0(t) \: \hat{U}_0^\dagger(t) \Ket{\psi_S(0)} \\ &\equiv \hat{K}_I(t) \Ket{\psi_I(0)} \end{aligned}$$ -- cgit v1.2.3