From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- source/know/concept/kubo-formula/index.md | 170 ++++++++++++++++++++++++++++++ 1 file changed, 170 insertions(+) create mode 100644 source/know/concept/kubo-formula/index.md (limited to 'source/know/concept/kubo-formula') diff --git a/source/know/concept/kubo-formula/index.md b/source/know/concept/kubo-formula/index.md new file mode 100644 index 0000000..40d90e1 --- /dev/null +++ b/source/know/concept/kubo-formula/index.md @@ -0,0 +1,170 @@ +--- +title: "Kubo formula" +date: 2021-09-23 +categories: +- Physics +- Quantum mechanics +- Perturbation +layout: "concept" +--- + +Consider the following quantum Hamiltonian, +split into a main time-independent term $\hat{H}_{0,S}$ +and a small time-dependent perturbation $\hat{H}_{1,S}$, +which is turned on at $t = t_0$: + +$$\begin{aligned} + \hat{H}_S(t) + = \hat{H}_{0,S} + \hat{H}_{1,S}(t) +\end{aligned}$$ + +And let $\Ket{\psi_S(t)}$ be the corresponding solutions to the Schrödinger equation. +Then, given a time-independent observable $\hat{A}$, +its expectation value $\expval{\hat{A}}$ evolves like so, +where the subscripts $S$ and $I$ +respectively refer to the Schrödinger +and [interaction pictures](/know/concept/interaction-picture/): + +$$\begin{aligned} + \expval{\hat{A}}(t) + = \matrixel{\psi_S(t)}{\hat{A}_S}{\psi_S(t)} + &= \matrixel{\psi_I(t)}{\hat{A}_I(t)}{\psi_I(t)} + \\ + &= \matrixel{\psi_I(t_0)\,}{\,\hat{K}_I^\dagger(t, t_0) \hat{A}_I(t) \hat{K}_I(t, t_0)\,}{\,\psi_I(t_0)} +\end{aligned}$$ + +Where the time evolution operator $\hat{K}_I(t, t_0)$ is as follows, +which we Taylor-expand: + +$$\begin{aligned} + \hat{K}_I(t, t_0) + = \mathcal{T} \bigg\{ \exp\!\bigg( \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \bigg\} + \approx 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} +\end{aligned}$$ + +With this, the following product of operators (as encountered earlier) can be written as: + +$$\begin{aligned} + \hat{K}_I^\dagger \hat{A}_I \hat{K}_I + &\approx \bigg( 1 + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \hat{A}_I(t) + \bigg( 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) + \\ + &\approx \hat{A}_I(t) + - \frac{i}{\hbar} \int_{t_0}^t \hat{A}_I(t) \hat{H}_{1,I}(t') \dd{t'} + + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{A}_I(t) \dd{t'} +\end{aligned}$$ + +Where we have dropped the last term, +because $\hat{H}_{1}$ is assumed to be so small +that it only matters to first order. +Here, we notice a commutator, so we can rewrite: + +$$\begin{aligned} + \hat{K}_I^\dagger \hat{A}_I \hat{K}_I + &= \hat{A}_I(t) - \frac{i}{\hbar} \int_{t_0}^t \Comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')} \dd{t'} +\end{aligned}$$ + +Returning to $\expval{\hat{A}}$, +we have the following formula, +where $\Expval{}$ is the expectation value for $\Ket{\psi(t)}$, +and $\Expval{}_0$ is the expectation value for $\Ket{\psi_I(t_0)}$: + +$$\begin{aligned} + \expval{\hat{A}}(t) + = \expval{\hat{K}_I^\dagger \hat{A}_I \hat{K}_I}_0 + = \expval{\hat{A}_I(t)}_0 - \frac{i}{\hbar} \int_{t_0}^t \Expval{\Comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} +\end{aligned}$$ + +Now we define $\delta\!\expval{\hat{A}}\!(t)$ +as the change of $\expval{\hat{A}}$ due to the perturbation $\hat{H}_1$, +and insert $\expval{\hat{A}}(t)$: + +$$\begin{aligned} + \delta\!\expval{\hat{A}}\!(t) + \equiv \expval{\hat{A}}(t) - \expval{\hat{A}_I}_0 + = - \frac{i}{\hbar} \int_{t_0}^t \Expval{\Comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} +\end{aligned}$$ + +Finally, we introduce +a [Heaviside step function](/know/concept/heaviside-step-function) $\Theta$ +and change the integration limit accordingly, +leading to the **Kubo formula** +describing the response of $\expval{\hat{A}}$ to first order in $\hat{H}_1$: + +$$\begin{aligned} + \boxed{ + \delta\!\expval{\hat{A}}\!(t) + = \int_{t_0}^\infty C^R_{A H_1}(t, t') \dd{t'} + } +\end{aligned}$$ + +Where we have defined the **retarded correlation function** $C^R_{A H_1}(t, t')$ as follows: + +$$\begin{aligned} + \boxed{ + C^R_{A H_1}(t, t') + \equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\Comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 + } +\end{aligned}$$ + +Note that observables are bosonic, +because in the [second quantization](/know/concept/second-quantization/) +they consist of products of even numbers +of particle creation/annihiliation operators. +Therefore, this correlation function +is a two-particle [Green's function](/know/concept/greens-functions/). + +A common situation is that $\hat{H}_1$ consists of +a time-independent operator $\hat{B}$ +and a time-dependent function $f(t)$, +allowing us to split $C^R_{A H_1}$ as follows: + +$$\begin{aligned} + \hat{H}_{1,S}(t) + = \hat{B}_S \: f(t) + \quad \implies \quad + C^R_{A H_1}(t, t') + = C^R_{A B}(t, t') f(t') +\end{aligned}$$ + +Since $C_{AB}^R$ is a Green's function, +we know that it only depends on the difference $t - t'$, +as long as the system was initially in thermodynamic equilibrium, +and $\hat{H}_{0,S}$ is time-independent: + +$$\begin{aligned} + C^R_{A B}(t, t') + = C^R_{A B}(t - t') +\end{aligned}$$ + +With this, the Kubo formula can be written as follows, +where we have set $t_0 = - \infty$: + +$$\begin{aligned} + \delta\!\expval{A}\!(t) + = \int_{-\infty}^\infty C^R_{A B}(t - t') f(t') \dd{t'} + = (C^R_{A B} * f)(t) +\end{aligned}$$ + +This is a convolution, +so the [convolution theorem](/know/concept/convolution-theorem/) +states that the [Fourier transform](/know/concept/fourier-transform/) +of $\delta\!\expval{\hat{A}}\!(t)$ is simply the product +of the transforms of $C^R_{AB}$ and $f$: + +$$\begin{aligned} + \boxed{ + \delta\!\expval{\hat{A}}\!(\omega) + = \tilde{C}{}^R_{A B}(\omega) \: \tilde{f}(\omega) + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. +2. K.S. Thygesen, + *Advanced solid state physics: linear response theory*, + 2013, unpublished. -- cgit v1.2.3