From 16555851b6514a736c5c9d8e73de7da7fc9b6288 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 20 Oct 2022 18:25:31 +0200 Subject: Migrate from 'jekyll-katex' to 'kramdown-math-sskatex' --- source/know/concept/laplace-transform/index.md | 37 +++++++++++++------------- 1 file changed, 19 insertions(+), 18 deletions(-) (limited to 'source/know/concept/laplace-transform') diff --git a/source/know/concept/laplace-transform/index.md b/source/know/concept/laplace-transform/index.md index 5b834c3..c7f352a 100644 --- a/source/know/concept/laplace-transform/index.md +++ b/source/know/concept/laplace-transform/index.md @@ -9,9 +9,9 @@ layout: "concept" --- The **Laplace transform** is an integral transform -that losslessly converts a function $f(t)$ of a real variable $t$, -into a function $\tilde{f}(s)$ of a complex variable $s$, -where $s$ is sometimes called the **complex frequency**, +that losslessly converts a function $$f(t)$$ of a real variable $$t$$, +into a function $$\tilde{f}(s)$$ of a complex variable $$s$$, +where $$s$$ is sometimes called the **complex frequency**, analogously to the [Fourier transform](/know/concept/fourier-transform/). The transform is defined as follows: @@ -23,14 +23,14 @@ $$\begin{aligned} } \end{aligned}$$ -Depending on $f(t)$, this integral may diverge. -This is solved by restricting the domain of $\tilde{f}(s)$ -to $s$ where $\mathrm{Re}\{s\} > s_0$, -for an $s_0$ large enough to compensate for the growth of $f(t)$. +Depending on $$f(t)$$, this integral may diverge. +This is solved by restricting the domain of $$\tilde{f}(s)$$ +to $$s$$ where $$\mathrm{Re}\{s\} > s_0$$, +for an $$s_0$$ large enough to compensate for the growth of $$f(t)$$. -The **inverse Laplace transform** $\hat{\mathcal{L}}{}^{-1}$ involves complex integration, +The **inverse Laplace transform** $$\hat{\mathcal{L}}{}^{-1}$$ involves complex integration, and is therefore a lot more difficult to calculate. -Fortunately, it is usually avoidable by rewriting a given $s$-space expression +Fortunately, it is usually avoidable by rewriting a given $$s$$-space expression using [partial fraction decomposition](/know/concept/partial-fraction-decomposition/), and then looking up the individual terms. @@ -47,7 +47,7 @@ $$\begin{aligned} } \end{aligned}$$ -This property generalizes nicely to higher-order derivatives of $s$, so: +This property generalizes nicely to higher-order derivatives of $$s$$, so: $$\begin{aligned} \boxed{ @@ -60,7 +60,7 @@ $$\begin{aligned}