From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- source/know/concept/larmor-precession/index.md | 102 +++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 source/know/concept/larmor-precession/index.md (limited to 'source/know/concept/larmor-precession') diff --git a/source/know/concept/larmor-precession/index.md b/source/know/concept/larmor-precession/index.md new file mode 100644 index 0000000..ff80619 --- /dev/null +++ b/source/know/concept/larmor-precession/index.md @@ -0,0 +1,102 @@ +--- +title: "Larmor precession" +date: 2021-07-02 +categories: +- Physics +- Quantum mechanics +layout: "concept" +--- + +Consider a stationary spin-1/2 particle, +placed in a [magnetic field](/know/concept/magnetic-field/) +with magnitude $B$ pointing in the $z$-direction. +In that case, its Hamiltonian $\hat{H}$ is given by: + +$$\begin{aligned} + \hat{H} = - \gamma B \hat{S}_z = - \frac{\hbar}{2} \gamma B \hat{\sigma_z} +\end{aligned}$$ + +Where $\gamma = - q / m$ is the gyromagnetic ratio, +and $\hat{\sigma}_z$ is the Pauli spin matrix for the $z$-direction. +Since $\hat{H}$ is proportional to $\hat{\sigma}_z$, +they share eigenstates $\Ket{\downarrow}$ and $\Ket{\uparrow}$. +The respective eigenenergies $E_{\downarrow}$ and $E_{\uparrow}$ are as follows: + +$$\begin{aligned} + E_{\downarrow} = \frac{\hbar}{2} \gamma B + \qquad + E_{\uparrow} = - \frac{\hbar}{2} \gamma B +\end{aligned}$$ + +Because $\hat{H}$ is time-independent, +the general time-dependent solution $\Ket{\chi(t)}$ is of the following form, +where $a$ and $b$ are constants, +and the exponentials are "twiddle factors": + +$$\begin{aligned} + \Ket{\chi(t)} + = a \exp(- i E_{\downarrow} t / \hbar) \: \Ket{\downarrow} + \:+\: b \exp(- i E_{\uparrow} t / \hbar) \: \Ket{\uparrow} +\end{aligned}$$ + +For our purposes, we can safely assume that $a$ and $b$ are real, +and then say that there exists an angle $\theta$ +satisfying $a = \sin(\theta / 2)$ and $b = \cos(\theta / 2)$, such that: + +$$\begin{aligned} + \Ket{\chi(t)} = \sin(\theta / 2) \exp(- i E_{\downarrow} t / \hbar) \: \Ket{\downarrow} + \:+\: \cos(\theta / 2) \exp(- i E_{\uparrow} t / \hbar) \: \Ket{\uparrow} +\end{aligned}$$ + +Now, we find the expectation values of the spin operators +$\expval{\hat{S}_x}$, $\expval{\hat{S}_y}$, and $\expval{\hat{S}_z}$. +The first is: + +$$\begin{aligned} + \matrixel{\chi}{\hat{S}_x}{\chi} + &= \frac{\hbar}{2} + \begin{bmatrix} a \exp(i E_{\downarrow} t / \hbar) \\ b \exp(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} + \cdot + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \cdot + \begin{bmatrix} a \exp(- i E_{\downarrow} t / \hbar) \\ b \exp(- i E_{\uparrow} t / \hbar) \end{bmatrix} + \\ + &= \frac{\hbar}{2} + \begin{bmatrix} a \exp(i E_{\downarrow} t / \hbar) \\ b \exp(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} + \cdot + \begin{bmatrix} b \exp(- i E_{\uparrow} t / \hbar) \\ a \exp(- i E_{\downarrow} t / \hbar) \end{bmatrix} + \\ + &= \frac{\hbar}{2} \Big( a b \exp(i (E_{\downarrow} \!-\! E_{\uparrow}) t / \hbar) + + b a \exp(i (E_{\uparrow} \!-\! E_{\downarrow}) t / \hbar) \Big) + \\ + &= \frac{\hbar}{2} \cos(\theta/2) \sin(\theta/2) \Big( \exp(i \gamma B t) + \exp(- i \gamma B t) \Big) + \\ + &= \frac{\hbar}{2} \cos(\gamma B t) \Big( \cos(\theta/2) \sin(\theta/2) + \cos(\theta/2) \sin(\theta/2) \Big) + \\ + &= \frac{\hbar}{2} \sin(\theta) \cos(\gamma B t) +\end{aligned}$$ + +The other two are calculated in the same way, +with the following results: + +$$\begin{aligned} + \matrixel{\chi}{\hat{S}_y}{\chi} = - \frac{\hbar}{2} \sin(\theta) \sin(\gamma B t) + \qquad + \matrixel{\chi}{\hat{S}_z}{\chi} = \frac{\hbar}{2} \cos(\theta) +\end{aligned}$$ + +The result is that the spin axis is off by $\theta$ from the $z$-direction, +and is rotating (or **precessing**) around the $z$-axis at the **Larmor frequency** $\omega$: + +$$\begin{aligned} + \boxed{ + \omega = \gamma B + } +\end{aligned}$$ + + + +## References +1. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. -- cgit v1.2.3