From 6e70f28ccbd5afc1506f71f013278a9d157ef03a Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 27 Oct 2022 20:40:09 +0200 Subject: Optimize last images, add proof template, improve CSS --- .../concept/matsubara-greens-function/index.md | 41 +++++++--------------- 1 file changed, 13 insertions(+), 28 deletions(-) (limited to 'source/know/concept/matsubara-greens-function') diff --git a/source/know/concept/matsubara-greens-function/index.md b/source/know/concept/matsubara-greens-function/index.md index fdcadb3..fd46abf 100644 --- a/source/know/concept/matsubara-greens-function/index.md +++ b/source/know/concept/matsubara-greens-function/index.md @@ -83,11 +83,8 @@ $$\begin{aligned} } \end{aligned}$$ -
- - - -
Due to this limited domain $$\tau \in [-\hbar \beta, \hbar \beta]$$, the [Fourier transform](/know/concept/fourier-transform/) @@ -157,11 +153,8 @@ $$\begin{aligned} } \end{aligned}$$ -
- - - -
Let us now define the **Matsubara frequencies** $$\omega_n$$ as a species-dependent subset of $$k_n$$: @@ -228,11 +220,8 @@ $$\begin{aligned} } \end{aligned}$$ -
- - - -
If we actually evaluate this, we obtain the following form of $$C_{AB}$$, @@ -283,11 +271,8 @@ $$\begin{aligned} } \end{aligned}$$ -
- - - -
+{% include proof/end.html id="proof-lehmann" %} + This gives us the primary use of the Matsubara Green's function $$C_{AB}$$: calculating the retarded $$C_{AB}^R$$ and advanced $$C_{AB}^A$$. -- cgit v1.2.3