From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- .../know/concept/multi-photon-absorption/index.md | 353 +++++++++++++++++++++ 1 file changed, 353 insertions(+) create mode 100644 source/know/concept/multi-photon-absorption/index.md (limited to 'source/know/concept/multi-photon-absorption') diff --git a/source/know/concept/multi-photon-absorption/index.md b/source/know/concept/multi-photon-absorption/index.md new file mode 100644 index 0000000..d5ed2d3 --- /dev/null +++ b/source/know/concept/multi-photon-absorption/index.md @@ -0,0 +1,353 @@ +--- +title: "Multi-photon absorption" +date: 2022-01-30 +categories: +- Physics +- Optics +- Quantum mechanics +- Nonlinear optics +- Perturbation +layout: "concept" +--- + +Consider a quantum system where there are many eigenstates $\Ket{n}$, +e.g. atomic orbitals, for an electron to occupy. +Suppose an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +passes by, such that its Hamiltonian gets perturbed by $\hat{H}_1$, given in the +[electric dipole approximation](/know/concept/electric-dipole-approximation/) by: + +$$\begin{aligned} + \hat{H}_1(t) + = -\vu{p} \cdot \vb{E} \cos(\omega t) + \approx -\vu{p} \cdot \vb{E} e^{-i \omega t} +\end{aligned}$$ + +Where $\vb{E}$ is the [electric field](/know/concept/electric-field/) amplitude, +and $\vu{p} \equiv q \vu{x}$ is the transition dipole moment operator. +Here, we have made the +[rotating wave approximation](/know/concept/rotating-wave-approximation/) +to neglect the $e^{i \omega t}$ term, +because it turns out to be irrelevant in this discussion. + + +We call the ground state $\Ket{0}$, +but other than that, the other states need *not* be sorted by energy. +However, we demand that the following holds +for all even-numbered states $\Ket{e}$ and $\Ket{e'}$, +and for all odd-numbered ($u$neven) states $\Ket{u}$ and $\Ket{u'}$: + +$$\begin{aligned} + \matrixel{e}{\hat{H}_1}{e'} = \matrixel{u}{\hat{H}_1}{u'} = 0 + \qquad \quad + \matrixel{e}{\hat{H}_1}{u} \neq 0 +\end{aligned}$$ + +This is justified for atomic orbitals thanks to +[Laporte's selection rule](/know/concept/selection-rules/). +Therefore, [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/) +says that the $N$th-order coefficient corrections are: + +$$\begin{aligned} + c_e^{(N)}(t) + &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(N-1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} + \\ + c_u^{(N)}(t) + &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(N-1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} +\end{aligned}$$ + +Where $\omega_{eu} = (E_e \!-\! E_u) / \hbar$. +For simplicity, the electron starts in the lowest-energy state $\Ket{0}$: + +$$\begin{aligned} + c_0^{(0)} = 1 + \qquad \qquad + c_u^{(0)} = c_{e \neq 0}^{(0)} = 0 +\end{aligned}$$ + +Finally, we prove the following useful relation for large $t$, +involving a [Dirac delta function](/know/concept/dirac-delta-function/) $\delta$: + +$$\begin{aligned} + \lim_{t \to \infty} \bigg| \frac{e^{i x t} - 1}{x} \bigg|^2 + = 2 \pi \: \delta(x) \: t +\end{aligned}$$ + +
+ + + +
+ + +## One-photon absorption + +To warm up, we start at first-order perturbation theory. +Thanks to our choice of initial condition, +nothing at all happens to any of the even-numbered states $\Ket{e}$: + +$$\begin{aligned} + c_e^{(1)}(t) + &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(0)} \: e^{i \omega_{eu} \tau} \dd{\tau} + = 0 +\end{aligned}$$ + +While the odd-numbered states $\Ket{u}$ have a nonzero correction $c_u^{(1)}$, +where $\vb{p}_{u0} = \matrixel{u}{\vu{p}}{0}$: + +$$\begin{aligned} + c_u^{(1)}(t) + &= -\frac{i}{\hbar} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{0} \: c_0^{(0)} \: e^{i \omega_{u0} \tau} \dd{\tau} + \\ + &= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \int_0^t e^{i (\omega_{u0} - \omega) \tau} \dd{\tau} + \\ + &= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg[ \frac{e^{i (\omega_{u0} - \omega) \tau}}{i (\omega_{u0} - \omega)} \bigg]_0^t +\end{aligned}$$ + +Consequently, the first-order correction +(in the rotating wave approximation) is given by: + +$$\begin{aligned} + \boxed{ + c_u^{(1)}(t) + \approx \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega} + } +\end{aligned}$$ + +Since $\big| c_u^{(1)}(t) \big|^2$ is the probability +of finding the electron in $\Ket{u}$, +its transition rate $R_u^{(1)}(t)$ is as follows, +averaged since the beginning $t = 0$: + +$$\begin{aligned} + R_u^{(1)}(t) + = \frac{\big| c_u^{(1)}(t) \big|^2}{t} + = \frac{1}{t} \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2 + \cdot \bigg| \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega} \bigg|^2 +\end{aligned}$$ + +For large $t \to \infty$, we can use the formula we proved earlier +to get [Fermi's golden rule](/know/concept/fermis-golden-rule/): + +$$\begin{aligned} + \boxed{ + R_u^{(1)} + = 2 \pi \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2 \delta(\omega_{u0} - \omega) + } +\end{aligned}$$ + +This well-known formula represents **one-photon absorption**: +it peaks at $\omega_{u0} = \omega$, i.e. when one photon $\hbar \omega$ +has the exact energy of the transition $\hbar \omega_{u0}$. +Note that this transition is only possible when $\matrixel{u}{\vu{p}}{0} \neq 0$, +i.e. for any odd-numbered final state $\Ket{u}$. + + +## Two-photon absorption + +Next, we go to second-order perturbation theory. +Based on the previous result, this time +all odd-numbered states $\Ket{u}$ are unaffected: + +$$\begin{aligned} + c_u^{(2)}(t) + &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} + = 0 +\end{aligned}$$ + +While the even-numbered states $\Ket{e}$ have the following correction, +using $\omega_{eu} \!+\! \omega_{u0} = \omega_{e0}$: + +$$\begin{aligned} + c_e^{(2)}(t) + &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} + \\ + &= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} + \int_0^t e^{i (\omega_{eu} + \omega_{u0} - 2 \omega) \tau} - e^{i (\omega_{eu} - \omega) \tau} \dd{\tau} + \\ + &= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} + \bigg[ \frac{e^{i (\omega_{e0} - 2 \omega) \tau}}{i (\omega_{e0} - 2 \omega)} + - \frac{e^{i (\omega_{eu} - \omega) \tau}}{i (\omega_{eu} - \omega)} \bigg]_0^t +\end{aligned}$$ + +The second term represents one-photon absorption between $\Ket{u}$ and $\Ket{e}$. +We do not care about that, so we drop it, leaving only the first term: + +$$\begin{aligned} + \boxed{ + c_e^{(2)}(t) + \approx \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} + \frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega} + } +\end{aligned}$$ + +As before, we can define a rate $R_e^{(2)}(t)$ +for all transitions represented by this term: + +$$\begin{aligned} + R_e^{(2)}(t) + = \frac{\big| c_e^{(2)}(t) \big|^2}{t} + = \frac{1}{t} \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2 + \cdot \bigg| \frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega} \bigg|^2 +\end{aligned}$$ + +Which for $t \to \infty$ takes a similar form to Fermi's golden rule, +using the formula we proved: + +$$\begin{aligned} + \boxed{ + R_e^{(2)} + = 2 \pi \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2 + \delta(\omega_{e0} - 2 \omega) + } +\end{aligned}$$ + +This represents **two-photon absorption**, since it peaks at $\omega_{e0} = 2 \omega$: +two identical photons $\hbar \omega$ are absorbed simultaneously +to bridge the energy gap $\hbar \omega_{e0}$. +Surprisingly, such a transition can only occur when $\matrixel{e}{\vu{p}}{0} = 0$, +i.e. for any even-numbered final state $\Ket{e}$. +Notice that the rate is proportional to $|\vb{E}|^4$, +so this effect is only noticeable at high light intensities. + + +## Three-photon absorption + +For third-order perturbation theory, +all even-numbered states $\Ket{e}$ are unchanged: + +$$\begin{aligned} + c_e^{(3)}(t) + &= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(2)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau} + = 0 +\end{aligned}$$ + +And the odd-numbered states $\Ket{u}$ get the following third-order corrections: + +$$\begin{aligned} + c_u^{(3)}(t) + &= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(2)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau} + \\ + &= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} + \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} + \int_0^t e^{i (\omega_{ue} + \omega_{e0} - 3 \omega) \tau} - e^{i (\omega_{ue} - \omega) \tau} \dd{\tau} + \\ + &= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} + \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} + \bigg[ \frac{e^{i (\omega_{u0} - 3 \omega) \tau}}{i (\omega_{u0} - 3 \omega)} + - \frac{e^{i (\omega_{ue} - \omega) \tau}}{i (\omega_{ue} - \omega)} \bigg]_0^t +\end{aligned}$$ + +Once again, the second term is uninteresting, +so we drop it and look at the first term only: + +$$\begin{aligned} + \boxed{ + c_u^{(3)}(t) + \approx \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} + \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} + {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} + \frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega} + } +\end{aligned}$$ + +The resulting transition rate $R_u^{(3)}(t)$ +is found to have the following familiar form: + +$$\begin{aligned} + R_u^{(3)}(t) + = \frac{\big| c_u^{(3)}(t) \big|^2}{t} + = \frac{1}{t} \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} + \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} + {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2 + \cdot \bigg| \frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega} \bigg|^2 +\end{aligned}$$ + +Applying our formula to this yields the following analogue of Fermi's golden rule: + +$$\begin{aligned} + \boxed{ + R_u^{(3)} + = 2 \pi \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}} + \frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})} + {\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2 \delta(\omega_{u0} - 3 \omega) + } +\end{aligned}$$ + +This represents **three-photon absorption**, since it peaks at $\omega_{u0} = 3 \omega$: +three identical photons $\hbar \omega$ are absorbed simultaneously +to bridge the energy gap $\hbar \omega_{u0}$. +This process is similar to one-photon absorption, +in the sense that it can only occur if $\matrixel{u}{\vu{p}}{0} \neq 0$. +The rate is proportional to $|\vb{E}|^6$, +so this effect only appears at extremely high light intensities. + + +## N-photon absorption + +A pattern has appeared in these calculations: +in $N$th-order perturbation theory, +we get a term representing $N$-photon absorption, +with a transition rate proportional to $|\vb{E}|^{2N}$. +Indeed, we can derive infinitely many formulas in this way, +although the results become increasingly unrealistic +due to the dependence on $\vb{E}$. + +If $N$ is odd, only odd-numbered destinations $\Ket{u}$ are allowed +(assuming the electron starts in the ground state $\Ket{0}$), +and if $N$ is even, only even-numbered destinations $\Ket{e}$. +Note that nothing has been said about the energies of these states +(other than $\Ket{0}$ being the minimum); +everything is determined by the matrix elements $\matrixel{f}{\vu{p}}{i}$. + + + +## References +1. R.W. Boyd, + *Nonlinear optics*, 4th edition, + Academic Press. +2. R. Shankar, + *Principles of quantum mechanics*, 2nd edition, + Springer. -- cgit v1.2.3