From 6e70f28ccbd5afc1506f71f013278a9d157ef03a Mon Sep 17 00:00:00 2001 From: Prefetch Date: Thu, 27 Oct 2022 20:40:09 +0200 Subject: Optimize last images, add proof template, improve CSS --- source/know/concept/multi-photon-absorption/index.md | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) (limited to 'source/know/concept/multi-photon-absorption') diff --git a/source/know/concept/multi-photon-absorption/index.md b/source/know/concept/multi-photon-absorption/index.md index 5dd9887..80dbc9b 100644 --- a/source/know/concept/multi-photon-absorption/index.md +++ b/source/know/concept/multi-photon-absorption/index.md @@ -73,11 +73,8 @@ $$\begin{aligned} = 2 \pi \: \delta(x) \: t \end{aligned}$$ -
- - - -
## One-photon absorption @@ -187,6 +183,7 @@ Note that this transition is only possible when $$\matrixel{u}{\vu{p}}{0} \neq 0 i.e. for any odd-numbered final state $$\Ket{u}$$. + ## Two-photon absorption Next, we go to second-order perturbation theory. @@ -255,6 +252,7 @@ Notice that the rate is proportional to $$|\vb{E}|^4$$, so this effect is only noticeable at high light intensities. + ## Three-photon absorption For third-order perturbation theory, @@ -327,6 +325,7 @@ The rate is proportional to $$|\vb{E}|^6$$, so this effect only appears at extremely high light intensities. + ## N-photon absorption A pattern has appeared in these calculations: -- cgit v1.2.3