From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- .../know/concept/navier-cauchy-equation/index.md | 108 +++++++++++++++++++++ 1 file changed, 108 insertions(+) create mode 100644 source/know/concept/navier-cauchy-equation/index.md (limited to 'source/know/concept/navier-cauchy-equation') diff --git a/source/know/concept/navier-cauchy-equation/index.md b/source/know/concept/navier-cauchy-equation/index.md new file mode 100644 index 0000000..b9db548 --- /dev/null +++ b/source/know/concept/navier-cauchy-equation/index.md @@ -0,0 +1,108 @@ +--- +title: "Navier-Cauchy equation" +date: 2021-04-02 +categories: +- Physics +- Continuum physics +layout: "concept" +--- + +The **Navier-Cauchy equation** describes **elastodynamics**: +the movements inside an elastic solid +in response to external forces and/or internal stresses. + +For a particle of the solid, whose position is given by the displacement field $\va{u}$, +Newton's second law is as follows, +where $\dd{m}$ and $\dd{V}$ are the particle's mass and volume, respectively: + +$$\begin{aligned} + \va{f^*} \dd{V} + = \pdvn{2}{\va{u}}{t} \dd{m} + = \rho \pdvn{2}{\va{u}}{t} \dd{V} +\end{aligned}$$ + +Where $\rho$ is the mass density, +and $\va{f^*}$ is the effective force density, +defined from the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/) $\hat{\sigma}$ +like so, with $\va{f}$ being an external body force, e.g. from gravity: + +$$\begin{aligned} + \va{f^*} + = \va{f} + \nabla \cdot \hat{\sigma}^\top +\end{aligned}$$ + +We can therefore write Newton's second law as follows, +while switching to index notation, +where $\nabla_j = \ipdv{}{x_j}$ is the partial derivative +with respect to the $j$th coordinate: + +$$\begin{aligned} + f_i + \sum_{j} \nabla_j \sigma_{ij} + = \rho \pdvn{2}{u_i}{t} +\end{aligned}$$ + +The components $\sigma_{ij}$ of the Cauchy stress tensor +are given by [Hooke's law](/know/concept/hookes-law/), +where $\mu$ and $\lambda$ are the Lamé coefficients, +which describe the material: + +$$\begin{aligned} + \sigma_{ij} + = 2 \mu u_{ij} + \lambda \delta_{ij} \sum_{k} u_{kk} +\end{aligned}$$ + +In turn, the components $u_{ij}$ of the +[Cauchy strain tensor](/know/concept/cauchy-strain-tensor/) +are defined as follows, +where $u_i$ are once again the components of the displacement vector $\va{u}$: + +$$\begin{aligned} + u_{ij} + = \frac{1}{2} \big( \nabla_i u_j + \nabla_j u_i \big) +\end{aligned}$$ + +To derive the Navier-Cauchy equation, +we start by inserting Hooke's law into Newton's law: + +$$\begin{aligned} + \rho \pdvn{2}{u_i}{t} + &= f_i + 2 \mu \sum_{j} \nabla_j u_{ij} + \lambda \sum_{j} \nabla_j \bigg( \delta_{ij} \sum_{k} u_{kk} \bigg) + \\ + &= f_i + 2 \mu \sum_{j} \nabla_j u_{ij} + \lambda \nabla_i \sum_{j} u_{jj} +\end{aligned}$$ + +And then into this we insert the definition of the strain components $u_{ij}$, yielding: + +$$\begin{aligned} + \rho \pdvn{2}{u_i}{t} + &= f_i + \mu \sum_{j} \nabla_j \big( \nabla_i u_j + \nabla_j u_i \big) + \lambda \nabla_i \sum_{j} \nabla_j u_{j} +\end{aligned}$$ + +Rearranging this a bit leads us to the Navier-Cauchy equation written in index notation: + +$$\begin{aligned} + \boxed{ + \rho \pdvn{2}{u_i}{t} + = f_i + \mu \sum_{j} \nabla_j^2 u_i + (\mu + \lambda) \nabla_i \sum_{j} \nabla_j u_j + } +\end{aligned}$$ + +Traditionally, it is written in vector notation instead, +in which case it looks like this: + +$$\begin{aligned} + \boxed{ + \rho \pdvn{2}{\va{u}}{t} + = \va{f} + \mu \nabla^2 \va{u} + (\mu + \lambda) \nabla (\nabla \cdot \va{u}) + } +\end{aligned}$$ + +A special case is the **Navier-Cauchy equilibrium equation**, +where the left-hand side is just zero. +That version describes **elastostatics**: the deformation of a solid at rest. + + +## References +1. B. Lautrup, + *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, + CRC Press. -- cgit v1.2.3