From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- source/know/concept/propagator/index.md | 69 +++++++++++++++++++++++++++++++++ 1 file changed, 69 insertions(+) create mode 100644 source/know/concept/propagator/index.md (limited to 'source/know/concept/propagator') diff --git a/source/know/concept/propagator/index.md b/source/know/concept/propagator/index.md new file mode 100644 index 0000000..3ed7fb7 --- /dev/null +++ b/source/know/concept/propagator/index.md @@ -0,0 +1,69 @@ +--- +title: "Propagator" +date: 2021-07-04 +categories: +- Physics +- Quantum mechanics +layout: "concept" +--- + +In quantum mechanics, the **propagator** $K(x_f, t_f; x_i, t_i)$ +gives the probability amplitude that a particle +starting at $x_i$ at $t_i$ ends up at position $x_f$ at $t_f$. +It is defined as follows: + +$$\begin{aligned} + \boxed{ + K(x_f, t_f; x_i, t_i) + \equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i} + } +\end{aligned}$$ + +Where $\hat{U} \equiv \exp(- i t \hat{H} / \hbar)$ is the time-evolution operator. +The probability that a particle travels +from $(x_i, t_i)$ to $(x_f, t_f)$ is then given by: + +$$\begin{aligned} + P + &= \big| K(x_f, t_f; x_i, t_i) \big|^2 +\end{aligned}$$ + +Given a general (i.e. non-collapsed) initial state $\psi_i(x) \equiv \psi(x, t_i)$, +we must integrate over $x_i$: + +$$\begin{aligned} + P + &= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2 +\end{aligned}$$ + +And if the final state $\psi_f(x) \equiv \psi(x, t_f)$ +is not a basis vector either, then we integrate twice: + +$$\begin{aligned} + P + &= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2 +\end{aligned}$$ + +Given a $\psi_i(x)$, the propagator can also be used +to find the full final wave function: + +$$\begin{aligned} + \boxed{ + \psi(x_f, t_f) + = \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i + } +\end{aligned}$$ + +Sometimes the name "propagator" is also used to refer to +the [fundamental solution](/know/concept/fundamental-solution/) $G$ +of the time-dependent Schrödinger equation, +which is related to $K$ by: + +$$\begin{aligned} + \boxed{ + G(x_f, t_f; x_i, t_i) + = - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i) + } +\end{aligned}$$ + +Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/). -- cgit v1.2.3