From 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 14 Oct 2022 23:25:28 +0200 Subject: Initial commit after migration from Hugo --- .../concept/random-phase-approximation/dyson.png | Bin 0 -> 4008 bytes .../concept/random-phase-approximation/index.md | 179 +++++++++++++++++++++ .../random-phase-approximation/pairbubble.png | Bin 0 -> 4794 bytes .../random-phase-approximation/rpasigma.png | Bin 0 -> 10310 bytes .../random-phase-approximation/screened.png | Bin 0 -> 7338 bytes 5 files changed, 179 insertions(+) create mode 100644 source/know/concept/random-phase-approximation/dyson.png create mode 100644 source/know/concept/random-phase-approximation/index.md create mode 100644 source/know/concept/random-phase-approximation/pairbubble.png create mode 100644 source/know/concept/random-phase-approximation/rpasigma.png create mode 100644 source/know/concept/random-phase-approximation/screened.png (limited to 'source/know/concept/random-phase-approximation') diff --git a/source/know/concept/random-phase-approximation/dyson.png b/source/know/concept/random-phase-approximation/dyson.png new file mode 100644 index 0000000..fb465be Binary files /dev/null and b/source/know/concept/random-phase-approximation/dyson.png differ diff --git a/source/know/concept/random-phase-approximation/index.md b/source/know/concept/random-phase-approximation/index.md new file mode 100644 index 0000000..ab43a0e --- /dev/null +++ b/source/know/concept/random-phase-approximation/index.md @@ -0,0 +1,179 @@ +--- +title: "Random phase approximation" +date: 2021-12-01 +categories: +- Physics +- Quantum mechanics +layout: "concept" +--- + +Recall that the [self-energy](/know/concept/self-energy/) $\Sigma$ +is defined as a sum of [Feynman diagrams](/know/concept/feynman-diagram/), +which each have an order $n$ equal to the number of interaction lines. +We consider the self-energy in the context of [jellium](/know/concept/jellium/), +so the interaction lines $W$ represent Coulomb repulsion, +and we use [imaginary time](/know/concept/imaginary-time/). + +Let us non-dimensionalize the Feynman diagrams in the self-energy, +by measuring momenta in units of $\hbar k_F$, +and energies in $\epsilon_F = \hbar^2 k_F^2 / (2 m)$. +Each internal variable then gives a factor $k_F^5$, +where $k_F^3$ comes from the 3D momentum integral, +and $k_F^2$ from the energy $1 / \beta$: + +$$\begin{aligned} + \frac{1}{(2 \pi)^3} \int_{-\infty}^\infty \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty \cdots \:\dd{\vb{k}} + \:\:\sim\:\: + k_F^5 +\end{aligned}$$ + +Meanwhile, every line gives a factor $1 / k_F^2$. +The [Matsubara Green's function](/know/concept/matsubara-greens-function/) $G^0$ +for a system with continuous translational symmetry +is found from [equation-of-motion theory](/know/concept/equation-of-motion-theory/): + +$$\begin{aligned} + W(\vb{k}) = \frac{e^2}{\varepsilon_0 |\vb{k}|^2} + \:\:\sim\:\: + \frac{1}{k_F^2} + \qquad \qquad + G_s^0(\vb{k}, i \omega_n^F) + = \frac{1}{i \hbar \omega_n^F - \varepsilon_\vb{k}} + \:\:\sim\:\: + \frac{1}{k_F^2} +\end{aligned}$$ + +An $n$th-order diagram in $\Sigma$ contains $n$ interaction lines, +$2n\!-\!1$ fermion lines, and $n$ integrals, +so in total it evolves as $1 / k_F^{n-2}$. +In jellium, we know that the electron density is proportional to $k_F^3$, +so for high densities we can rest assured that higher-order terms in $\Sigma$ +converge to zero faster than lower-order terms. + +However, at a given order $n$, not all diagrams are equally important. +In a given diagram, due to momentum conservation, +some interaction lines carry the same momentum variable. +Because $W(\vb{k}) \propto 1 / |\vb{k}|^2$, +small $\vb{k}$ make a large contribution, +and the more interaction lines depend on the same $\vb{k}$, +the larger the contribution becomes. + +In other words, each diagram is dominated by contributions +from the momentum carried by the largest number of interactions. +At order $n$, there is one diagram +where all $n$ interactions carry the same momentum, +and this one dominates all others at this order. + +The **random phase approximation** consists of removing most diagrams +from the defintion of the full self-energy $\Sigma$, +leaving only the single most divergent one at each order $n$, +i.e. the ones where all $n$ interaction lines +carry the same momentum and energy: + + + + + +Where we have defined the **screened interaction** $W^\mathrm{RPA}$, +denoted by a double wavy line: + + + + + +Rearranging the above sequence of diagrams quickly leads to the following +[Dyson equation](/know/concept/dyson-equation/): + + + + + +In Fourier space, this equation's linear shape +means it is algebraic, so we can write it out: + +$$\begin{aligned} + \boxed{ + W^\mathrm{RPA} + = W + W \Pi_0 W^\mathrm{RPA} + } +\end{aligned}$$ + +Where we have defined the **pair-bubble** $\Pi_0$ as follows, +with an internal wavevector $\vb{q}$, fermionic frequency $i \omega_m^F$, and spin $s$. +Abbreviating $\tilde{\vb{k}} \equiv (\vb{k}, i \omega_n^B)$ +and $\tilde{\vb{q}} \equiv (\vb{q}, i \omega_n^F)$: + + + + + +We isolate the Dyson equation for $W^\mathrm{RPA}$, +which reveals its physical interpretation as a *screened* interaction: +the "raw" interaction $W \!=\! e^2 / (\varepsilon_0 |\vb{k}|^2)$ +is weakened by a term containing $\Pi_0$: + +$$\begin{aligned} + W^\mathrm{RPA}(\vb{k}, i \omega_n^B) + = \frac{W(\vb{k})}{1 - W(\vb{k}) \: \Pi_0(\vb{k}, i \omega_n^B)} + = \frac{e^2}{\varepsilon_0 |\vb{k}|^2 - e^2 \Pi_0(\vb{k}, i \omega_n^B)} +\end{aligned}$$ + +Let us evaluate the pair-bubble $\Pi_0$ more concretely. +The Feynman diagram translates to: + +$$\begin{aligned} + -\hbar \Pi_0(\vb{k}, i \omega_n^B) + &= - \sum_{s} \frac{1}{(2 \pi)^3} \int \frac{1}{\hbar \beta} \sum_{m = -\infty}^\infty + \hbar G_s(\vb{k} \!+\! \vb{q}, i \omega_n^B \!+\! i \omega_m^F) \: \hbar G_s(\vb{q}, i \omega_m^F) \dd{\vb{q}} + \\ + &= - \frac{2 \hbar}{(2 \pi)^3} \int \frac{1}{\beta} \sum_{m = -\infty}^\infty + \frac{1}{i \hbar \omega_n^B + i \hbar \omega_m^F - \varepsilon_{\vb{k}+\vb{q}}} \: \frac{1}{i \hbar \omega_m^F - \varepsilon_{\vb{q}}} \dd{\vb{q}} +\end{aligned}$$ + +Here we recognize a [Matsubara sum](/know/concept/matsubara-sum/), +and rewrite accordingly. +Note that the residues of $n_F$ are $1 / (\hbar \beta)$ +when it is a function of frequency, +and $1 / \beta$ when it is a function of energy, so: + +$$\begin{aligned} + \Pi_0(\vb{k}, i \omega_n^B) + &= \frac{2}{(2 \pi)^3} \int + \frac{n_F(\varepsilon_{\vb{k}+\vb{q}} - i \hbar \omega_n^B)}{(\varepsilon_{\vb{k}+\vb{q}} - i \hbar \omega_n^B) - \varepsilon_{\vb{q}}} + + \frac{n_F(\varepsilon_{\vb{q}})}{i \hbar \omega_n^B + (\varepsilon_{\vb{q}}) - \varepsilon_{\vb{k}+\vb{q}}} \dd{\vb{q}} + \\ + &= \frac{2}{(2 \pi)^3} \int \frac{n_F(\varepsilon_{\vb{q}}) - n_F(\varepsilon_{\vb{k}+\vb{q}})} + {i \hbar \omega_n^B + \varepsilon_{\vb{q}} - \varepsilon_{\vb{k}+\vb{q}}} \dd{\vb{q}} +\end{aligned}$$ + +Where we have used that $n_F(\varepsilon \!+\! i \hbar \omega_n^B) = n_F(\varepsilon)$. +Analogously to extracting the retarded Green's function $G^R(\omega)$ +from the Matsubara Green's function $G^0(i \omega_n^F)$, +we replace $i \omega_n^F \to \omega \!+\! i \eta$, +where $\eta \to 0^+$ is a positive infinitesimal, +yielding the retarded pair-bubble $\Pi_0^R$: + +$$\begin{aligned} + \boxed{ + \Pi_0^R(\vb{k}, \omega) + = \frac{2}{(2 \pi)^3} \int \frac{n_F(\varepsilon_{\vb{q}}) - n_F(\varepsilon_{\vb{k}+\vb{q}})} + {\hbar (\omega + i \eta) + \varepsilon_{\vb{q}} - \varepsilon_{\vb{k}+\vb{q}}} \dd{\vb{q}} + } +\end{aligned}$$ + +This is as far as we can go before making simplifying assumptions. +Therefore, we leave it at: + +$$\begin{aligned} + \boxed{ + W^\mathrm{RPA}(\vb{k}, \omega) + = \frac{e^2}{\varepsilon_0 |\vb{k}|^2 - e^2 \Pi_0(\vb{k}, \omega)} + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. diff --git a/source/know/concept/random-phase-approximation/pairbubble.png b/source/know/concept/random-phase-approximation/pairbubble.png new file mode 100644 index 0000000..8b51c23 Binary files /dev/null and b/source/know/concept/random-phase-approximation/pairbubble.png differ diff --git a/source/know/concept/random-phase-approximation/rpasigma.png b/source/know/concept/random-phase-approximation/rpasigma.png new file mode 100644 index 0000000..fedc9f5 Binary files /dev/null and b/source/know/concept/random-phase-approximation/rpasigma.png differ diff --git a/source/know/concept/random-phase-approximation/screened.png b/source/know/concept/random-phase-approximation/screened.png new file mode 100644 index 0000000..bb5ccdd Binary files /dev/null and b/source/know/concept/random-phase-approximation/screened.png differ -- cgit v1.2.3